These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29406112)

  • 1. Inhibition of thrombin by functionalized C
    Liu Y; Fu J; Pan W; Xue Q; Liu X; Zhang A
    J Environ Sci (China); 2018 Jan; 63():285-295. PubMed ID: 29406112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C
    Liu Y; Yan B; Winkler DA; Fu J; Zhang A
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18626-18638. PubMed ID: 28492309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation Study of the HIV-1 Protease Inhibit ion Using Fullerene and New Fullerene Derivatives of Carbon Nanostructures.
    Barzegar A; Naghizadeh E; Zakariazadeh M; Azamat J
    Mini Rev Med Chem; 2017; 17(7):633-647. PubMed ID: 27292780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics.
    Santos SM; Dinis AM; Peixoto F; Ferreira L; Jurado AS; Videira RA
    Toxicol Sci; 2014 Mar; 138(1):117-29. PubMed ID: 24361870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors.
    Turabekova M; Rasulev B; Theodore M; Jackman J; Leszczynska D; Leszczynski J
    Nanoscale; 2014 Apr; 6(7):3488-95. PubMed ID: 24548972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction Principle Between Coagulation Factor X and Fullerene Derivatives with Different Hydrophilic-Hydrophobic Properties for Anticoagulation.
    Liu J; Liu R; Li L; Wang X; Gao X; Xing G; Jiang H; Zhao L
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4603-4610. PubMed ID: 30913755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver and fullerene nanoparticles' effect on interleukin-2-dependent proliferation of CD4 (+) T cells.
    Côté-Maurais G; Bernier J
    Toxicol In Vitro; 2014 Dec; 28(8):1474-81. PubMed ID: 25172299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fullerene C₆₀ nanoparticles on A549 cells.
    Wang F; Jin C; Liang H; Tang Y; Zhang H; Yang Y
    Environ Toxicol Pharmacol; 2014 Mar; 37(2):656-61. PubMed ID: 24577232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors.
    Saleh NA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1523-9. PubMed ID: 25459714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles.
    Baker GL; Gupta A; Clark ML; Valenzuela BR; Staska LM; Harbo SJ; Pierce JT; Dill JA
    Toxicol Sci; 2008 Jan; 101(1):122-31. PubMed ID: 17878152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigations on C60 -ionic liquid interactions and their impacts on C60 dispersion behavior.
    Wang Z; Tang L; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Aug; 33(8):1802-8. PubMed ID: 24764219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C60-fullerene binds with the ATP binding domain of human DNA topoiosmerase II alpha.
    Baweja L; Gurbani D; Shanker R; Pandey AK; Subramanian V; Dhawan A
    J Biomed Nanotechnol; 2011 Feb; 7(1):177-8. PubMed ID: 21485859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of surface hydrophobicity of engineered nanoparticles.
    Xiao Y; Wiesner MR
    J Hazard Mater; 2012 May; 215-216():146-51. PubMed ID: 22417396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Differential Activity of Thrombin Inhibitors Using Docking, QSAR, Molecular Dynamics, and MM-GBSA.
    Mena-Ulecia K; Tiznado W; Caballero J
    PLoS One; 2015; 10(11):e0142774. PubMed ID: 26599107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2).
    Canesi L; Fabbri R; Gallo G; Vallotto D; Marcomini A; Pojana G
    Aquat Toxicol; 2010 Oct; 100(2):168-77. PubMed ID: 20444507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant.
    Huang SS; Wei SC; Chang HT; Lin HJ; Huang CC
    J Control Release; 2016 Jan; 221():9-17. PubMed ID: 26643617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of C60 buckminster fullerenes on an 11-amino-1-undecene-covered Si(111) substrate.
    Zhang X; Teplyakov AV
    Langmuir; 2008 Feb; 24(3):810-20. PubMed ID: 18085804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.
    Lehto M; Karilainen T; Róg T; Cramariuc O; Vanhala E; Tornaeus J; Taberman H; Jänis J; Alenius H; Vattulainen I; Laine O
    PLoS One; 2014; 9(12):e114490. PubMed ID: 25473947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of fullerenes to amyloid beta fibrils: size matters.
    Huy PD; Li MS
    Phys Chem Chem Phys; 2014 Oct; 16(37):20030-40. PubMed ID: 25123396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotransport of nanoplastics (NPs) with fullerene (C
    Dong Z; Zhang W; Qiu Y; Yang Z; Wang J; Zhang Y
    Water Res; 2019 Jan; 148():469-478. PubMed ID: 30408733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.