BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29406990)

  • 21. Epigenetic regulatory mechanisms during preimplantation development.
    Corry GN; Tanasijevic B; Barry ER; Krueger W; Rasmussen TP
    Birth Defects Res C Embryo Today; 2009 Dec; 87(4):297-313. PubMed ID: 19960551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maternal micronutrients and brain global methylation patterns in the offspring.
    Sable P; Randhir K; Kale A; Chavan-Gautam P; Joshi S
    Nutr Neurosci; 2015 Jan; 18(1):30-6. PubMed ID: 24257323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-carbon metabolism, spermatogenesis, and male infertility.
    Singh K; Jaiswal D
    Reprod Sci; 2013 Jun; 20(6):622-30. PubMed ID: 23138010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses.
    Pellanda H; Forges T; Bressenot A; Chango A; Bronowicki JP; Guéant JL; Namour F
    Mol Nutr Food Res; 2012 Jun; 56(6):976-85. PubMed ID: 22707272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetics of embryonic stem cells.
    Calvanese V; Fraga MF
    Adv Exp Med Biol; 2012; 741():231-53. PubMed ID: 22457114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing.
    Mc Auley MT; Mooney KM; Salcedo-Sora JE
    Brief Bioinform; 2018 Mar; 19(2):303-317. PubMed ID: 28007697
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Mirzadeh Azad F; Struys EA; Wingert V; Hannibal L; Mills K; Jansen JH; Longley DB; Stunnenberg HG; Atlasi Y
    Sci Adv; 2023 Aug; 9(33):eadg7997. PubMed ID: 37595034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene.
    Kim YI; Pogribny IP; Basnakian AG; Miller JW; Selhub J; James SJ; Mason JB
    Am J Clin Nutr; 1997 Jan; 65(1):46-52. PubMed ID: 8988912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation.
    Atkinson S; Armstrong L
    Cell Tissue Res; 2008 Jan; 331(1):23-9. PubMed ID: 18004593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells.
    Zhou Y; Kim J; Yuan X; Braun T
    Circ Res; 2011 Oct; 109(9):1067-81. PubMed ID: 21998298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice.
    Geng Y; Gao R; Chen X; Liu X; Liao X; Li Y; Liu S; Ding Y; Wang Y; He J
    Mol Hum Reprod; 2015 Nov; 21(11):844-56. PubMed ID: 26246607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-carbon metabolism and schizophrenia: current challenges and future directions.
    Krebs MO; Bellon A; Mainguy G; Jay TM; Frieling H
    Trends Mol Med; 2009 Dec; 15(12):562-70. PubMed ID: 19896901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler.
    Li S; Zhi L; Liu Y; Shen J; Liu L; Yao J; Yang X
    Br J Nutr; 2016 Feb; 115(3):411-21. PubMed ID: 26586196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies.
    Kim YI
    Environ Mol Mutagen; 2004; 44(1):10-25. PubMed ID: 15199543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Profiling of DNA and histone methylation reveals epigenetic-based regulation of gene expression during retinal differentiation of stem/progenitor cells isolated from the ciliary pigment epithelium of human cadaveric eyes.
    Jasty S; Krishnakumar S
    Brain Res; 2016 Nov; 1651():1-10. PubMed ID: 27641993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proposing interactions between maternal phospholipids and the one carbon cycle: A novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life.
    Khot V; Chavan-Gautam P; Joshi S
    Life Sci; 2015 May; 129():16-21. PubMed ID: 25283080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene-nutrient interactions and DNA methylation.
    Friso S; Choi SW
    J Nutr; 2002 Aug; 132(8 Suppl):2382S-2387S. PubMed ID: 12163697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development.
    Clare CE; Brassington AH; Kwong WY; Sinclair KD
    Annu Rev Anim Biosci; 2019 Feb; 7():263-287. PubMed ID: 30412672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Threonine metabolism and embryonic stem cell self-renewal.
    Chen G; Wang J
    Curr Opin Clin Nutr Metab Care; 2014 Jan; 17(1):80-5. PubMed ID: 24232288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats.
    Kim JM; Hong K; Lee JH; Lee S; Chang N
    J Nutr Biochem; 2009 Mar; 20(3):172-6. PubMed ID: 18547797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.