BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29407146)

  • 1. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats.
    Zhang Y; Jiang G; Yu W; Liu D; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():18-26. PubMed ID: 29407146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite.
    Yu W; Jiang G; Liu D; Li L; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():425-428. PubMed ID: 28183628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
    Ling MH; Chen MC
    Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin.
    Zhang Y; Wei W; Lv P; Wang L; Ma G
    Eur J Pharm Biopharm; 2011 Jan; 77(1):11-9. PubMed ID: 20933083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topical iodine facilitates transdermal delivery of insulin.
    Sintov AC; Wormser U
    J Control Release; 2007 Apr; 118(2):185-8. PubMed ID: 17270303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of composite microneedles integrated with insulin-loaded CaCO
    Liu D; Yu B; Jiang G; Yu W; Zhang Y; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():180-188. PubMed ID: 29853081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate/chitosan nanoparticles are effective for oral insulin delivery.
    Sarmento B; Ribeiro A; Veiga F; Sampaio P; Neufeld R; Ferreira D
    Pharm Res; 2007 Dec; 24(12):2198-206. PubMed ID: 17577641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal delivery of insulin using microneedles in vivo.
    Martanto W; Davis SP; Holiday NR; Wang J; Gill HS; Prausnitz MR
    Pharm Res; 2004 Jun; 21(6):947-52. PubMed ID: 15212158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-loaded alginic acid nanoparticles for sublingual delivery.
    Patil NH; Devarajan PV
    Drug Deliv; 2016; 23(2):429-36. PubMed ID: 24901208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdermal delivery of insulin from a novel biphasic lipid system in diabetic rats.
    King MJ; Badea I; Solomon J; Kumar P; Gaspar KJ; Foldvari M
    Diabetes Technol Ther; 2002; 4(4):479-88. PubMed ID: 12396742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Rapidly Separable Microneedles for Transdermal Delivery of Metformin on Diabetic Rats.
    Liu T; Jiang G; Song G; Sun Y; Zhang X; Zeng Z
    J Pharm Sci; 2021 Aug; 110(8):3004-3010. PubMed ID: 33878323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats.
    Li X; Qi J; Xie Y; Zhang X; Hu S; Xu Y; Lu Y; Wu W
    Int J Nanomedicine; 2013; 8():23-32. PubMed ID: 23293517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance.
    Wong TW; Sumiran N
    J Pharm Pharmacol; 2014 May; 66(5):646-57. PubMed ID: 24329400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticulate assembly of mannuronic acid- and guluronic acid-rich alginate: oral insulin carrier and glucose binder.
    Kadir A; Mokhtar MT; Wong TW
    J Pharm Sci; 2013 Dec; 102(12):4353-63. PubMed ID: 24258282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transdermal insulin application system with dissolving microneedles.
    Ito Y; Nakahigashi T; Yoshimoto N; Ueda Y; Hamasaki N; Takada K
    Diabetes Technol Ther; 2012 Oct; 14(10):891-9. PubMed ID: 23013202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin.
    Builders PF; Kunle OO; Okpaku LC; Builders MI; Attama AA; Adikwu MU
    Eur J Pharm Biopharm; 2008 Nov; 70(3):777-83. PubMed ID: 18644444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.