These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 29407150)
21. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. Liu W; Su P; Gonzales A; Chen S; Wang N; Wang J; Li H; Zhang Z; Webster TJ Int J Nanomedicine; 2015; 10():1997-2019. PubMed ID: 25792833 [TBL] [Abstract][Full Text] [Related]
22. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Chopra D; Gulati K; Ivanovski S Acta Biomater; 2021 Jun; 127():80-101. PubMed ID: 33744499 [TBL] [Abstract][Full Text] [Related]
23. pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. Cai X; Luo Y; Zhang W; Du D; Lin Y ACS Appl Mater Interfaces; 2016 Aug; 8(34):22442-50. PubMed ID: 27463610 [TBL] [Abstract][Full Text] [Related]
24. Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties. Aal NA; Al-Hazmi F; Al-Ghamdi AA; Al-Ghamdi AA; El-Tantawy F; Yakuphanoglu F Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():871-7. PubMed ID: 25155943 [TBL] [Abstract][Full Text] [Related]
25. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Chen H; Zhang M; Li B; Chen D; Dong X; Wang Y; Gu Y Biomaterials; 2015; 53():532-44. PubMed ID: 25890749 [TBL] [Abstract][Full Text] [Related]
26. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. Maher S; Linklater D; Rastin H; Le Yap P; Ivanova EP; Losic D ChemMedChem; 2022 Jan; 17(2):e202100580. PubMed ID: 34606176 [TBL] [Abstract][Full Text] [Related]
27. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Kazemzadeh-Narbat M; Lai BF; Ding C; Kizhakkedathu JN; Hancock RE; Wang R Biomaterials; 2013 Aug; 34(24):5969-77. PubMed ID: 23680363 [TBL] [Abstract][Full Text] [Related]
28. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating. Fathi M; Akbari B; Taheriazam A Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109743. PubMed ID: 31349530 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo evaluation of antibacterial activity of polyhexamethylene guanidine (PHMG)-loaded TiO Wu F; Xu J; Yan R; Hu B; Li G; Jin M; Jiang X; Li J; Tang P; Zhu J; Yan S Biomed Mater; 2020 Jun; 15(4):045016. PubMed ID: 32567560 [TBL] [Abstract][Full Text] [Related]
31. An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles. Liu X; Li X; Li S; Zhou X; Li S; Wang Q; Dai J; Lai R; Xie L; Zhong M; Zhang Y; Zhou L J Biomed Nanotechnol; 2014 Feb; 10(2):194-204. PubMed ID: 24738328 [TBL] [Abstract][Full Text] [Related]
32. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Huo K; Zhang X; Wang H; Zhao L; Liu X; Chu PK Biomaterials; 2013 Apr; 34(13):3467-78. PubMed ID: 23439134 [TBL] [Abstract][Full Text] [Related]
33. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa. Ponnuvelu DV; Suriyaraj SP; Vijayaraghavan T; Selvakumar R; Pullithadathail B J Mater Sci Mater Med; 2015 Jul; 26(7):204. PubMed ID: 26152512 [TBL] [Abstract][Full Text] [Related]
34. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Wang T; Weng Z; Liu X; Yeung KWK; Pan H; Wu S Bioact Mater; 2017 Mar; 2(1):44-50. PubMed ID: 29744410 [TBL] [Abstract][Full Text] [Related]
35. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Sharma RK; Agarwal M; Balani K Mater Sci Eng C Mater Biol Appl; 2016 May; 62():843-51. PubMed ID: 26952491 [TBL] [Abstract][Full Text] [Related]
36. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO Li T; Wang N; Chen S; Lu R; Li H; Zhang Z Int J Nanomedicine; 2017; 12():2995-3007. PubMed ID: 28442908 [TBL] [Abstract][Full Text] [Related]
37. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Zhang H; Sun Y; Tian A; Xue XX; Wang L; Alquhali A; Bai X Int J Nanomedicine; 2013; 8():4379-89. PubMed ID: 24403827 [TBL] [Abstract][Full Text] [Related]
38. Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Liu Z; Zhu Y; Liu X; Yeung KWK; Wu S Colloids Surf B Biointerfaces; 2017 Mar; 151():165-177. PubMed ID: 28011439 [TBL] [Abstract][Full Text] [Related]
39. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy. Roguska A; Belcarz A; Pisarek M; Ginalska G; Lewandowska M Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():158-66. PubMed ID: 25842121 [TBL] [Abstract][Full Text] [Related]
40. Drug diffusion, integration, and stability of nanoengineered drug-releasing implants in bone ex-vivo. Rahman S; Gulati K; Kogawa M; Atkins GJ; Pivonka P; Findlay DM; Losic D J Biomed Mater Res A; 2016 Mar; 104(3):714-725. PubMed ID: 26481558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]