BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29407457)

  • 1. Cortical parcellation based on structural connectivity: A case for generative models.
    Tittgemeyer M; Rigoux L; Knösche TR
    Neuroimage; 2018 Jun; 173():592-603. PubMed ID: 29407457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group-wise parcellation of the cortex through multi-scale spectral clustering.
    Parisot S; Arslan S; Passerat-Palmbach J; Wells WM; Rueckert D
    Neuroimage; 2016 Aug; 136():68-83. PubMed ID: 27192437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex.
    Park H; Park YH; Cha J; Seo SW; Na DL; Lee JM
    PLoS One; 2017; 12(3):e0171803. PubMed ID: 28328993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural grey matter parcellation and its relevance for connectome analyses.
    Caspers S; Eickhoff SB; Zilles K; Amunts K
    Neuroimage; 2013 Oct; 80():18-26. PubMed ID: 23571419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction.
    Lefranc S; Roca P; Perrot M; Poupon C; Le Bihan D; Mangin JF; Rivière D
    Med Image Anal; 2016 May; 30():11-29. PubMed ID: 26849421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex.
    Beul SF; Hilgetag CC
    Neuroimage; 2019 Apr; 189():777-792. PubMed ID: 30677500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Connectomic Atlas of the Human Cerebrum-Chapter 1: Introduction, Methods, and Significance.
    Baker CM; Burks JD; Briggs RG; Conner AK; Glenn CA; Sali G; McCoy TM; Battiste JD; O'Donoghue DL; Sughrue ME
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S1-S9. PubMed ID: 30260422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain parcellation based on information theory.
    Bonmati E; Bardera A; Boada I
    Comput Methods Programs Biomed; 2017 Nov; 151():203-212. PubMed ID: 28947002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Connectivity-Based Parcellation of the Thalamus: An Unsupervised Clustering Method and Its Validity Investigation.
    Fan Y; Nickerson LD; Li H; Ma Y; Lyu B; Miao X; Zhuo Y; Ge J; Zou Q; Gao JH
    Brain Connect; 2015 Dec; 5(10):620-30. PubMed ID: 26106821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical information-based clustering for connectivity-based cortex parcellation.
    Gorbach NS; Schütte C; Melzer C; Goldau M; Sujazow O; Jitsev J; Douglas T; Tittgemeyer M
    Front Neuroinform; 2011; 5():18. PubMed ID: 21977015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.
    Gămănuţ R; Kennedy H; Toroczkai Z; Ercsey-Ravasz M; Van Essen DC; Knoblauch K; Burkhalter A
    Neuron; 2018 Feb; 97(3):698-715.e10. PubMed ID: 29420935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why data coherence and quality is critical for understanding interareal cortical networks.
    Kennedy H; Knoblauch K; Toroczkai Z
    Neuroimage; 2013 Oct; 80():37-45. PubMed ID: 23603347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individualized Cortical Parcellation Based on Diffusion MRI Tractography.
    Han M; Yang G; Li H; Zhou S; Xu B; Jiang J; Men W; Ge J; Gong G; Liu H; Gao JH
    Cereb Cortex; 2020 May; 30(5):3198-3208. PubMed ID: 31814022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible graphical model for multi-modal parcellation of the cortex.
    Parisot S; Glocker B; Ktena SI; Arslan S; Schirmer MD; Rueckert D
    Neuroimage; 2017 Nov; 162():226-248. PubMed ID: 28889005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic thalamus parcellation from resting-state fMRI data.
    Ji B; Li Z; Li K; Li L; Langley J; Shen H; Nie S; Zhang R; Hu X
    Hum Brain Mapp; 2016 Mar; 37(3):954-67. PubMed ID: 26706823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connectomes for 40,000 UK Biobank participants: A multi-modal, multi-scale brain network resource.
    Mansour L S; Di Biase MA; Smith RE; Zalesky A; Seguin C
    Neuroimage; 2023 Dec; 283():120407. PubMed ID: 37839728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.