These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 29407525)

  • 1. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.
    Sarin H
    J Angiogenes Res; 2010 Aug; 2():14. PubMed ID: 20701757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid and protein exchange in microvascular networks: Importance of modelling heterogeneity in geometrical and biophysical properties.
    Guidoboni G; Marazzi NM; Fraser J; Sacco R; Palaniappan K; Huxley VH
    J Physiol; 2021 Oct; 599(20):4597-4624. PubMed ID: 34387386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 1: Theoretical Models.
    Lücker A; Secomb TW; Weber B; Jenny P
    Front Physiol; 2018; 9():420. PubMed ID: 29755365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of oxygen transport to tissue.
    Popel AS
    Crit Rev Biomed Eng; 1989; 17(3):257-321. PubMed ID: 2673661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling of the Microvasculature: May the Blood Flow Be With You.
    Santamaría R; González-Álvarez M; Delgado R; Esteban S; Arroyo AG
    Front Physiol; 2020; 11():586852. PubMed ID: 33178049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Capillary blood flow morphofunctional readjustments in northerners of different ages.].
    Averyanova IV; Vdovenko SI
    Adv Gerontol; 2023; 36(1):29-35. PubMed ID: 37192351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell adhesion affects the properties of interstitial fluid flow: A study using multiscale poroelastic composite modeling.
    Dehghani H; Holzapfel GA; Mittelbronn M; Zilian A
    J Mech Behav Biomed Mater; 2024 May; 153():106486. PubMed ID: 38428205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional, discrete-continuum model of blood pressure in microvascular networks.
    Sweeney PW; Walsh C; Walker-Samuel S; Shipley RJ
    Int J Numer Method Biomed Eng; 2024 May; ():e3832. PubMed ID: 38770788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of intestinal oedema formation.
    Young J; Rivière B; Cox CS; Uray K
    Math Med Biol; 2014 Mar; 31(1):1-15. PubMed ID: 23036806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling large scale artery haemodynamics from the heart to the eye in response to simulated microgravity.
    Caddy HT; Kelsey LJ; Parker LP; Green DJ; Doyle BJ
    NPJ Microgravity; 2024 Jan; 10(1):7. PubMed ID: 38218868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sublingual microvasculature in diabetic patients.
    Wadowski PP; Kautzky-Willer A; Gremmel T; Koppensteiner R; Wolf P; Ertl S; Weikert C; Schörgenhofer C; Jilma B
    Microvasc Res; 2020 May; 129():103971. PubMed ID: 31899168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent effects of low-O(2) tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: implications for O(2) supply to skeletal muscle.
    Sprague RS; Goldman D; Bowles EA; Achilleus D; Stephenson AH; Ellis CG; Ellsworth ML
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H566-73. PubMed ID: 20511412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease.
    Ostergaard L; Kristiansen SB; Angleys H; Frøkiær J; Michael Hasenkam J; Jespersen SN; Bøtker HE
    Basic Res Cardiol; 2014 May; 109(3):409. PubMed ID: 24743925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of fluid and oxygen exchanges through microcirculation for the assessment of microcirculation alterations caused by type 2 diabetes.
    Tang Y; He Y
    Microvasc Res; 2018 May; 117():61-73. PubMed ID: 29407525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes.
    Benedict KF; Coffin GS; Barrett EJ; Skalak TC
    Microcirculation; 2011 Jan; 18(1):63-73. PubMed ID: 21166927
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.