BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 29407704)

  • 1. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology.
    Lares M; Ncibi MC; Sillanpää M; Sillanpää M
    Water Res; 2018 Apr; 133():236-246. PubMed ID: 29407704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplastics in sewage sludge from the wastewater treatment plants in China.
    Li X; Chen L; Mei Q; Dong B; Dai X; Ding G; Zeng EY
    Water Res; 2018 Oct; 142():75-85. PubMed ID: 29859394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics.
    Maw MM; Boontanon N; Aung HKZZ; Jindal R; Fujii S; Visvanathan C; Boontanon SK
    Chemosphere; 2024 Aug; 361():142536. PubMed ID: 38844106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants.
    Hongprasith N; Kittimethawong C; Lertluksanaporn R; Eamchotchawalit T; Kittipongvises S; Lohwacharin J
    Environ Sci Pollut Res Int; 2020 May; 27(15):18557-18564. PubMed ID: 32198683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplastics removal efficiency and risk analysis of wastewater treatment plants in Oman.
    Al-Amri A; Yavari Z; Reza Nikoo M; Karimi M
    Chemosphere; 2024 Jul; 359():142206. PubMed ID: 38710411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant.
    Bayo J; López-Castellanos J; Olmos S
    Mar Pollut Bull; 2020 Jul; 156():111211. PubMed ID: 32365007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.
    González S; Petrovic M; Barceló D
    Chemosphere; 2007 Feb; 67(2):335-43. PubMed ID: 17123581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater.
    Pauwels B; Fru Ngwa F; Deconinck S; Verstraete W
    Environ Technol; 2006 Apr; 27(4):395-402. PubMed ID: 16583824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastic removal and management strategies for wastewater treatment plants.
    Ahmed SF; Islam N; Tasannum N; Mehjabin A; Momtahin A; Chowdhury AA; Almomani F; Mofijur M
    Chemosphere; 2024 Jan; 347():140648. PubMed ID: 37952815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MBR pilot plant for textile wastewater treatment and reuse.
    Lubello C; Caffaz S; Mangini L; Santianni D; Caretti C
    Water Sci Technol; 2007; 55(10):115-24. PubMed ID: 17564377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada.
    Gies EA; LeNoble JL; Noël M; Etemadifar A; Bishay F; Hall ER; Ross PS
    Mar Pollut Bull; 2018 Aug; 133():553-561. PubMed ID: 30041349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant.
    Raju S; Carbery M; Kuttykattil A; Senthirajah K; Lundmark A; Rogers Z; Scb S; Evans G; Palanisami T
    Water Res; 2020 Apr; 173():115549. PubMed ID: 32086069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.
    Talvitie J; Mikola A; Koistinen A; Setälä O
    Water Res; 2017 Oct; 123():401-407. PubMed ID: 28686942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment.
    Li RH; Wang XM; Li XY
    Water Res; 2018 Feb; 129():402-412. PubMed ID: 29175759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane bioreactors for municipal wastewater treatment - a viable option to reduce the amount of polar pollutants discharged into surface waters?
    Weiss S; Reemtsma T
    Water Res; 2008 Aug; 42(14):3837-47. PubMed ID: 18684484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process.
    Hidayaturrahman H; Lee TG
    Mar Pollut Bull; 2019 Sep; 146():696-702. PubMed ID: 31426211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation and Metabolism of Tetrabromobisphenol A (TBBPA) in the Bioaugmented Activated Sludge Batch Bioreactor System by Heterotrophic and Nitrifying Bacteria.
    Islam MS; Zhou H; Zytner RG
    Water Environ Res; 2018 Feb; 90(2):122-128. PubMed ID: 29348000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.