These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 29407740)
21. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Cheng X; Danek T; Drozdova J; Huang Q; Qi W; Zou L; Yang S; Zhao X; Xiang Y Environ Monit Assess; 2018 Mar; 190(4):194. PubMed ID: 29516193 [TBL] [Abstract][Full Text] [Related]
22. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH. Qu M; Wang Y; Huang B; Zhao Y Environ Pollut; 2018 Sep; 240():184-190. PubMed ID: 29734079 [TBL] [Abstract][Full Text] [Related]
23. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Hu W; Huang B; Weindorf DC; Chen Y Bull Environ Contam Toxicol; 2014 Apr; 92(4):420-6. PubMed ID: 24585255 [TBL] [Abstract][Full Text] [Related]
24. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data. Kim SM; Choi Y Int J Environ Res Public Health; 2017 Jun; 14(6):. PubMed ID: 28629168 [TBL] [Abstract][Full Text] [Related]
25. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Rouillon M; Taylor MP Environ Pollut; 2016 Jul; 214():255-264. PubMed ID: 27100216 [TBL] [Abstract][Full Text] [Related]
26. Impacts of land use/cover and slope on the spatial distribution and ecological risk of trace metals in soils affected by smelting emissions. Liu X; Peng C; Zhou Z; Jiang Z; Guo Z; Xiao X Environ Monit Assess; 2023 Dec; 196(1):53. PubMed ID: 38110584 [TBL] [Abstract][Full Text] [Related]
27. Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation. Osibote A; Oputu O Environ Geochem Health; 2020 Jan; 42(1):283-312. PubMed ID: 31197554 [TBL] [Abstract][Full Text] [Related]
28. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi'an city, China. Chen X; Lu X Ecotoxicol Environ Saf; 2018 Apr; 151():153-160. PubMed ID: 29334637 [TBL] [Abstract][Full Text] [Related]
29. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Zhong B; Liang T; Wang L; Li K Sci Total Environ; 2014 Aug; 490():422-34. PubMed ID: 24875258 [TBL] [Abstract][Full Text] [Related]
30. Sources and Distribution of Trace Elements in Soils Near Coal-Related Industries. Shangguan Y; Wei Y; Wang L; Hou H Arch Environ Contam Toxicol; 2016 Apr; 70(3):439-51. PubMed ID: 26428004 [TBL] [Abstract][Full Text] [Related]
31. Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps. RachwaĆ M; Wawer M; Magiera T; Steinnes E Environ Sci Pollut Res Int; 2017 Dec; 24(34):26410-26423. PubMed ID: 28948429 [TBL] [Abstract][Full Text] [Related]
32. [Heavy metals content and pollution risk assessment of cropland soils around a pesticide industrial park]. Shi NN; Ding YF; Zhao XF; Wang QS Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1835-43. PubMed ID: 20879545 [TBL] [Abstract][Full Text] [Related]
33. Major and trace elements in soils in the Central Pyrenees: high altitude soils as a cumulative record of background atmospheric contamination over SW Europe. Bacardit M; Camarero L Environ Sci Pollut Res Int; 2010 Nov; 17(9):1606-21. PubMed ID: 20556527 [TBL] [Abstract][Full Text] [Related]
34. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites. Rouillon M; Taylor MP; Dong C Environ Pollut; 2017 Oct; 229():780-789. PubMed ID: 28668180 [TBL] [Abstract][Full Text] [Related]
35. Establishing a health risk assessment for metal speciation in soil-A case study in an industrial area in China. Zhang Y; Chen J; Wang L; Zhao Y; Ou P; Shi W Ecotoxicol Environ Saf; 2018 Dec; 166():488-497. PubMed ID: 30312948 [TBL] [Abstract][Full Text] [Related]
36. Correcting correlation quality of portable X-ray fluorescence to better map heavy metal contamination by spatial co-kriging interpolation. Zhao M; Chen Z; Qian C; Zhao Y; Xu Y; Liu Y Ecotoxicol Environ Saf; 2024 Feb; 271():115962. PubMed ID: 38237394 [TBL] [Abstract][Full Text] [Related]
37. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Chen T; Chang Q; Liu J; Clevers JGPW; Kooistra L Sci Total Environ; 2016 Sep; 565():155-164. PubMed ID: 27161137 [TBL] [Abstract][Full Text] [Related]
38. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Li H; Qian X; Hu W; Wang Y; Gao H Sci Total Environ; 2013 Jul; 456-457():212-21. PubMed ID: 23602974 [TBL] [Abstract][Full Text] [Related]
39. [Concentrations of soil heavy metals and their spatial distribution in the surrounding area of Fenhe Reservoir]. Li JC; Zhang H; Shi W Huan Jing Ke Xue; 2013 Jan; 34(1):116-20. PubMed ID: 23487926 [TBL] [Abstract][Full Text] [Related]
40. Mapping of trace elements in topsoil of arid areas and assessment of ecological and human health risks in Qatar. Shomar B; Sankaran R; Solano JR Environ Res; 2023 May; 225():115456. PubMed ID: 36796603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]