These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29407830)

  • 1. Shear-thinning fluids for gravity and anisotropy mitigation during soil remediation in the vadose zone.
    Maire J; Brunol E; Fatin-Rouge N
    Chemosphere; 2018 Apr; 197():661-669. PubMed ID: 29407830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of a foam-based oxidative treatment of hydrocarbon-contaminated unsaturated and anisotropic soils.
    Bouzid I; Maire J; Fatin-Rouge N
    Chemosphere; 2019 Oct; 233():667-676. PubMed ID: 31195271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam.
    Bouzid I; Maire J; Ahmed SI; Fatin-Rouge N
    Chemosphere; 2018 Nov; 210():977-986. PubMed ID: 30208558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory Testing in Support of Surfactant-Alternating-Gas Foam Flood for NAPL Recovery from Shallow Subsurface.
    Stylianou M; Lee JH; Kostarelos K; Voskaridou T
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):744-750. PubMed ID: 30255234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D sandbox experiments of surfactant foams for mobility control and enhanced LNAPL recovery in layered soils.
    Longpré-Girard M; Martel R; Robert T; Lefebvre R; Lauzon JM
    J Contam Hydrol; 2016 Oct; 193():63-73. PubMed ID: 27639103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.
    López-Vizcaíno R; Navarro V; Alonso J; Yustres Á; Cañizares P; Rodrigo MA; Sáez C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(1):44-51. PubMed ID: 26488188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of foam propagation and stability in highly permeable porous media under lateral water flow: Diverting groundwater for application to soil remediation.
    Davarzani H; Aranda R; Colombano S; Laurent F; Bertin H
    J Contam Hydrol; 2021 Dec; 243():103917. PubMed ID: 34758436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of shear-thinning fluids and strategies for enhanced in situ removal of heavy chlorinated compounds-DNAPLs in an anisotropic aquifer.
    Bouzid I; Fatin-Rouge N
    J Hazard Mater; 2022 Jun; 432():128703. PubMed ID: 35316641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of carrier on the transport and DDT removal performance of nano-zerovalent iron in packed sands.
    Shi L; Chen J; Wang Q; Song X
    Chemosphere; 2018 Oct; 209():489-495. PubMed ID: 29940532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation.
    Zhong L; Oostrom M; Truex MJ; Vermeul VR; Szecsody JE
    J Hazard Mater; 2013 Jan; 244-245():160-70. PubMed ID: 23246952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam.
    Zhong L; Szecsody J; Oostrom M; Truex M; Shen X; Li X
    J Hazard Mater; 2011 Jul; 191(1-3):249-57. PubMed ID: 21592663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics.
    Roostapour A; Kam SI
    J Hazard Mater; 2012 Dec; 243():37-51. PubMed ID: 23107288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes.
    Bouzid I; Maire J; Laurent F; Broquaire M; Fatin-Rouge N
    Environ Pollut; 2021 Jan; 268(Pt A):115678. PubMed ID: 33007599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saponin foam for soil remediation: On the use of polymer or solid particles to enhance foam resistance against oil.
    Forey N; Atteia O; Omari A; Bertin H
    J Contam Hydrol; 2020 Jan; 228():103560. PubMed ID: 31699303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced remedial amendment delivery through fluid viscosity modifications: experiments and numerical simulations.
    Zhong L; Oostrom M; Wietsma TW; Covert MA
    J Contam Hydrol; 2008 Oct; 101(1-4):29-41. PubMed ID: 18786743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of saponin foam reinforced with colloidal particles as an application to soil remediation: Experiments in a 2D tank.
    Forey N; Atteia O; Omari A; Bertin H
    J Contam Hydrol; 2021 Mar; 238():103761. PubMed ID: 33482372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of surfactants for the remediation of contaminated soils: a review.
    Mao X; Jiang R; Xiao W; Yu J
    J Hazard Mater; 2015 Mar; 285():419-35. PubMed ID: 25528485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone.
    Bouzid I; Pino Herrera D; Dierick M; Pechaud Y; Langlois V; Klein PY; Albaric J; Fatin-Rouge N
    J Hazard Mater; 2021 Jan; 401():123420. PubMed ID: 32763708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.
    Shen X; Zhao L; Ding Y; Liu B; Zeng H; Zhong L; Li X
    J Hazard Mater; 2011 Feb; 186(2-3):1773-80. PubMed ID: 21227581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.