These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29407830)

  • 21. Model fit to experimental data for foam-assisted deep vadose zone remediation.
    Roostapour A; Lee G; Zhong L; Kam SI
    J Hazard Mater; 2014 Jan; 264():460-73. PubMed ID: 24295900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency.
    Wang H; Chen J
    J Environ Sci (China); 2012; 24(7):1270-7. PubMed ID: 23513448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation on influence of foam mobility on polychlorinated biphenyl removal in foam flushing.
    Wang H; Chen J
    Environ Technol; 2014; 35(5-8):993-1002. PubMed ID: 24645483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remediation of multilayer soils contaminated by heavy chlorinated solvents using biopolymer-surfactant mixtures: Two-dimensional flow experiments and simulations.
    Alamooti A; Colombano S; Glabe ZA; Lion F; Davarzani D; Ahmadi-Sénichault A
    Water Res; 2023 Sep; 243():120305. PubMed ID: 37441897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface tension and rheology of aqueous dispersed systems containing a new hydrophobically modified polymer and surfactants.
    Claro C; Muñoz J; de la Fuente J; Jiménez-Castellanos MR; Lucero MJ
    Int J Pharm; 2008 Jan; 347(1-2):45-53. PubMed ID: 17693044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Aug; 243():187-205. PubMed ID: 31096172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation.
    Robert T; Martel R; Lefebvre R; Lauzon JM; Morin A
    J Contam Hydrol; 2017 Sep; 204():57-65. PubMed ID: 28826903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using tracer technique to study the flow behavior of surfactant foam.
    Tsai YJ; Chou FC; Cheng SJ
    J Hazard Mater; 2009 Jul; 166(2-3):1232-7. PubMed ID: 19157697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a treatment solution for reductive dechlorination of hexachloro-1,3-butadiene in vadose zone soil.
    Yee LH; Aagaard V; Johnstone A; Lee M; Kjelleberg SJ; Manefield M
    Biodegradation; 2010 Nov; 21(6):947-56. PubMed ID: 20383654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Guar gum solutions for improved delivery of iron particles in porous media (part 1): porous medium rheology and guar gum-induced clogging.
    Gastone F; Tosco T; Sethi R
    J Contam Hydrol; 2014 Oct; 166():23-33. PubMed ID: 25065767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation.
    Zhong L; Truex MJ; Kananizadeh N; Li Y; Lea AS; Yan X
    J Contam Hydrol; 2015; 175-176():17-25. PubMed ID: 25720668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.
    Olson MR; Sale TC
    J Contam Hydrol; 2015; 177-178():206-19. PubMed ID: 25981955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.
    Zhao YS; Su Y; Lian JR; Wang HF; Li LL; Qin CY
    Water Environ Res; 2016 Nov; 88(11):2132-2141. PubMed ID: 28661329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties of XG solutions.
    Liu D; Ren L; Wen C; Dong J
    Environ Technol; 2018 Mar; 39(5):607-615. PubMed ID: 28316256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar.
    Hauswirth SC; Miller CT
    J Contam Hydrol; 2014 Oct; 167():44-60. PubMed ID: 25190671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of polidocanol foam in view of its use in sclerotherapy.
    Nastasa V; Samaras K; Ampatzidis Ch; Karapantsios TD; Trelles MA; Moreno-Moraga J; Smarandache A; Pascu ML
    Int J Pharm; 2015 Jan; 478(2):588-96. PubMed ID: 25433198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles.
    Vu KA; Mulligan CN
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined soil washing and CDEO for the removal of atrazine from soils.
    Dos Santos EV; Sáez C; Martínez-Huitle CA; Cañizares P; Rodrigo MA
    J Hazard Mater; 2015 Dec; 300():129-134. PubMed ID: 26164070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant foam flushing for in situ removal of DNAPLs in shallow soils.
    Maire J; Fatin-Rouge N
    J Hazard Mater; 2017 Jan; 321():247-255. PubMed ID: 27631687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.