BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29407904)

  • 1. Development of CDK-targeted scoring functions for prediction of binding affinity.
    Levin NMB; Pintro VO; Bitencourt-Ferreira G; de Mattos BB; de Castro Silvério A; de Azevedo WF
    Biophys Chem; 2018 Apr; 235():1-8. PubMed ID: 29407904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2.
    Bitencourt-Ferreira G; Duarte da Silva A; Filgueira de Azevedo W
    Curr Med Chem; 2021; 28(2):253-265. PubMed ID: 31729287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.
    de Ávila MB; Xavier MM; Pintro VO; de Azevedo WF
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):305-310. PubMed ID: 29017921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS.
    Bitencourt-Ferreira G; Rizzotto C; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(9):1746-1756. PubMed ID: 32410551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning to Predict Binding Affinity.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():251-273. PubMed ID: 31452110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease.
    Pintro VO; de Azevedo WF
    Comb Chem High Throughput Screen; 2017; 20(9):820-827. PubMed ID: 29165067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2022; 29(14):2438-2455. PubMed ID: 34365938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.
    Heck GS; Pintro VO; Pereira RR; de Ávila MB; Levin NMB; de Azevedo WF
    Curr Med Chem; 2017; 24(23):2459-2470. PubMed ID: 28641555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions.
    Xavier MM; Heck GS; Avila MB; Levin NMB; Pintro VO; Carvalho NL; Azevedo WF
    Comb Chem High Throughput Screen; 2016; 19(10):801-812. PubMed ID: 27686428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets.
    Li H; Leung KS; Wong MH; Ballester PJ
    Mol Inform; 2015 Feb; 34(2-3):115-26. PubMed ID: 27490034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.
    Xu W; Lucke AJ; Fairlie DP
    J Mol Graph Model; 2015 Apr; 57():76-88. PubMed ID: 25682361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic Potential Energy in Protein-Drug Complexes.
    Bitencourt-Ferreira G; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(24):4954-4971. PubMed ID: 33593246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molegro Virtual Docker for Docking.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():149-167. PubMed ID: 31452104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.