These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29407935)

  • 1. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling.
    Li Z; Li M; Li X; Xin J; Wang Y; Shen QW; Zhang D
    Food Chem; 2018 May; 249():8-15. PubMed ID: 29407935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability.
    Li M; Li Z; Li X; Xin J; Wang Y; Li G; Wu L; Shen QW; Zhang D
    Food Chem; 2018 Feb; 240():104-111. PubMed ID: 28946221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phosphoproteomic analysis of ovine muscle with different postmortem glycolytic rates.
    Chen L; Li Z; Everaert N; Lametsch R; Zhang D
    Food Chem; 2019 May; 280():203-209. PubMed ID: 30642488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.
    Huang H; Larsen MR; Palmisano G; Dai J; Lametsch R
    J Proteomics; 2014 Jun; 106():125-39. PubMed ID: 24769528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of protein phosphorylation on color stability of ground meat.
    Li M; Li X; Xin J; Li Z; Li G; Zhang Y; Du M; Shen QW; Zhang D
    Food Chem; 2017 Mar; 219():304-310. PubMed ID: 27765231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative muscle proteomics/phosphoproteomics analysis provides new insight for the biosafety evaluation of fat-1 transgenic cattle.
    Xin X; Liu X; Li X; Ding X; Yang S; Jin C; Li G; Guo H
    Transgenic Res; 2017 Oct; 26(5):625-638. PubMed ID: 28710545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality.
    Liu M; Wei Y; Li X; Quek SY; Zhao J; Zhong H; Zhang D; Liu Y
    Meat Sci; 2018 Jul; 141():103-111. PubMed ID: 29580736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Wang MC; Lee YH; Liao PC
    Anal Bioanal Chem; 2015 Feb; 407(5):1343-56. PubMed ID: 25486920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate.
    Ahmed A; Raja VJ; Cavaliere P; Dephoure N
    J Proteome Res; 2019 Mar; 18(3):1411-1417. PubMed ID: 30576142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO
    Bllaci L; Torsetnes SB; Wierzbicka C; Shinde S; Sellergren B; Rogowska-Wrzesinska A; Jensen ON
    Anal Chem; 2017 Nov; 89(21):11332-11340. PubMed ID: 28972365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation.
    Barrios-Llerena ME; Le Bihan T
    Methods Mol Biol; 2019; 1977():35-42. PubMed ID: 30980321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Quantitative Phosphoproteomic Analysis of the Chicken Egg during Incubation Based on Tandem Mass Tag Labeling.
    Sun H; Qiu N; Keast R; Wang H; Li B; Huang Q; Li S
    J Agric Food Chem; 2019 Dec; 67(48):13353-13361. PubMed ID: 31682436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical strategies for phosphoproteomics.
    Thingholm TE; Jensen ON; Larsen MR
    Proteomics; 2009 Mar; 9(6):1451-68. PubMed ID: 19235172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence.
    Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C
    Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer.
    Cheng LC; Li Z; Graeber TG; Graham NA; Drake JM
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.