These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29408109)
1. Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water. Beuguel Q; Tavares JR; Carreau PJ; Heuzey MC J Colloid Interface Sci; 2018 Apr; 516():23-33. PubMed ID: 29408109 [TBL] [Abstract][Full Text] [Related]
2. Rheological insights on the evolution of sonicated cellulose nanocrystal dispersions. Girard M; Bertrand F; Tavares JR; Heuzey MC Ultrason Sonochem; 2021 Oct; 78():105747. PubMed ID: 34534796 [TBL] [Abstract][Full Text] [Related]
3. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. Khoshkava V; Kamal MR ACS Appl Mater Interfaces; 2014 Jun; 6(11):8146-57. PubMed ID: 24809661 [TBL] [Abstract][Full Text] [Related]
4. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis. Shaheen TI; Emam HE Int J Biol Macromol; 2018 Feb; 107(Pt B):1599-1606. PubMed ID: 28988844 [TBL] [Abstract][Full Text] [Related]
5. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Kamal MR; Khoshkava V Carbohydr Polym; 2015 Jun; 123():105-14. PubMed ID: 25843840 [TBL] [Abstract][Full Text] [Related]
6. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589 [TBL] [Abstract][Full Text] [Related]
7. Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis. Özdemir B; Nofar M Carbohydr Polym; 2021 Sep; 268():118243. PubMed ID: 34127223 [TBL] [Abstract][Full Text] [Related]
8. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. Peng Y; Gardner DJ; Han Y; Cai Z; Tshabalala MA J Colloid Interface Sci; 2013 Sep; 405():85-95. PubMed ID: 23786833 [TBL] [Abstract][Full Text] [Related]
9. Evidence-based guidelines for the ultrasonic dispersion of cellulose nanocrystals. Girard M; Vidal D; Bertrand F; Tavares JR; Heuzey MC Ultrason Sonochem; 2021 Mar; 71():105378. PubMed ID: 33186861 [TBL] [Abstract][Full Text] [Related]
10. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. Li MC; Wu Q; Song K; Qing Y; Wu Y ACS Appl Mater Interfaces; 2015 Mar; 7(8):5006-16. PubMed ID: 25679499 [TBL] [Abstract][Full Text] [Related]
11. Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals-xyloglucan multilayered thin films. Dammak A; Moreau C; Azzam F; Jean B; Cousin F; Cathala B J Colloid Interface Sci; 2015 Dec; 460():214-20. PubMed ID: 26322493 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200 [TBL] [Abstract][Full Text] [Related]
13. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Tang L; Huang B; Lu Q; Wang S; Ou W; Lin W; Chen X Bioresour Technol; 2013 Jan; 127():100-5. PubMed ID: 23131628 [TBL] [Abstract][Full Text] [Related]
15. Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods. Shi AM; Li D; Wang LJ; Adhikari B Carbohydr Polym; 2012 Nov; 90(4):1732-8. PubMed ID: 22944440 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system. Qin Y; Chang R; Ge S; Xiong L; Sun Q Int J Biol Macromol; 2017 Sep; 102():1073-1082. PubMed ID: 28476596 [TBL] [Abstract][Full Text] [Related]
17. Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite. Abdallah W; Mirzadeh A; Tan V; Kamal MR Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587837 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Cellulose Nanocrystal Suspension Treatment on Suspension Viscosity and Casted Film Property. Peng Y; Via B Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209018 [TBL] [Abstract][Full Text] [Related]
19. Microcrystalline cellulose-carboxymethyl cellulose sodium as an effective dispersant for drug nanocrystals: A case study. Dan J; Ma Y; Yue P; Xie Y; Zheng Q; Hu P; Zhu W; Yang M Carbohydr Polym; 2016 Jan; 136():499-506. PubMed ID: 26572381 [TBL] [Abstract][Full Text] [Related]
20. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications. Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]