These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29408116)

  • 21. Surface activity of solid particles with extremely rough surfaces.
    Nonomura Y; Komura S
    J Colloid Interface Sci; 2008 Jan; 317(2):501-6. PubMed ID: 17936775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deposition of latex colloids at rough mineral surfaces: an analogue study using nanopatterned surfaces.
    Krishna Darbha G; Fischer C; Michler A; Luetzenkirchen J; Schäfer T; Heberling F; Schild D
    Langmuir; 2012 Apr; 28(16):6606-17. PubMed ID: 22448713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DLVO Interactions between Particles and Rough Surfaces: An Extended Surface Element Integration Method.
    Rajupet S
    Langmuir; 2021 Nov; 37(45):13208-13217. PubMed ID: 34730964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique.
    Shen L; Cui X; Yu G; Li F; Li L; Feng S; Lin H; Chen J
    J Colloid Interface Sci; 2017 May; 494():194-203. PubMed ID: 28160704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle adhesion to rough surfaces.
    Rajupet S; Sow M; Lacks DJ
    Phys Rev E; 2020 Jul; 102(1-1):012904. PubMed ID: 32794996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is surface roughness a "scapegoat" or a primary factor when defining particle-substrate interactions?
    Huang X; Bhattacharjee S; Hoek EM
    Langmuir; 2010 Feb; 26(4):2528-37. PubMed ID: 19908846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Reverse osmosis membrane fouling by humic acid using XDLVO approach: effect of calcium ions].
    Yao SD; Gao XY; Guo BH; Bao N; Xie HJ; Liang S
    Huan Jing Ke Xue; 2012 Jun; 33(6):1884-90. PubMed ID: 22946170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic double-layer interaction between spherical particles inside a rough capillary.
    Das PK; Bhattacharjee S
    J Colloid Interface Sci; 2004 May; 273(1):278-90. PubMed ID: 15051462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial interactions between plastic particles in plastics flotation.
    Wang CQ; Wang H; Gu GH; Fu JG; Lin QQ; Liu YN
    Waste Manag; 2015 Dec; 46():56-61. PubMed ID: 26337962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology.
    Chen L; Tian Y; Cao CQ; Zhang J; Li ZN
    Water Res; 2012 May; 46(8):2693-704. PubMed ID: 22406287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.
    Muthu S; Childress A; Brant J
    J Colloid Interface Sci; 2014 Aug; 428():191-8. PubMed ID: 24910053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the fouling of algogenic organic matter in microfiltration using membrane-foulant interaction energy analysis: effects of organic hydrophobicity.
    Huang W; Chu H; Dong B
    Colloids Surf B Biointerfaces; 2014 Oct; 122():447-456. PubMed ID: 25074503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: the role of surface roughness and electrostatic forces.
    Henry C; Minier JP; Lefèvre G
    Langmuir; 2012 Jan; 28(1):438-52. PubMed ID: 22107171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.
    Chen J; Shen L; Zhang M; Hong H; He Y; Liao BQ; Lin H
    Bioresour Technol; 2016 Feb; 201():245-52. PubMed ID: 26679047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of Particulate Contamination from Solid Surfaces Using Polymeric Micropillars.
    Izadi H; Dogra N; Perreault F; Schwarz C; Simon S; Vanderlick TK
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16967-78. PubMed ID: 27101206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling.
    Siegismund D; Undisz A; Germerodt S; Schuster S; Rettenmayr M
    Acta Biomater; 2014 Jan; 10(1):267-75. PubMed ID: 24071002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes.
    Feng L; Li X; Song P; Du G; Chen J
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1235-44. PubMed ID: 21870124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of soft interfacial volume fraction in composite materials with complex convex particles.
    Xu W; Chen W; Chen H
    J Chem Phys; 2014 Jan; 140(3):034704. PubMed ID: 25669404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.