These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29408283)

  • 1. Crosstalk-free multicolor RICS using spectral weighting.
    Schrimpf W; Lemmens V; Smisdom N; Ameloot M; Lamb DC; Hendrix J
    Methods; 2018 May; 140-141():97-111. PubMed ID: 29408283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence microscopy data for quantitative mobility and interaction analysis of proteins in living cells.
    Lemmens V; Ramanathan K; Hendrix J
    Data Brief; 2020 Apr; 29():105348. PubMed ID: 32181308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection.
    Dunsing V; Petrich A; Chiantia S
    Elife; 2021 Sep; 10():. PubMed ID: 34494547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS.
    Hendrix J; Lamb DC
    Methods Mol Biol; 2014; 1076():653-82. PubMed ID: 24108649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
    Gröner N; Capoulade J; Cremer C; Wachsmuth M
    Opt Express; 2010 Sep; 18(20):21225-37. PubMed ID: 20941019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed interleaved excitation fluctuation imaging.
    Hendrix J; Schrimpf W; Höller M; Lamb DC
    Biophys J; 2013 Aug; 105(4):848-61. PubMed ID: 23972837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra.
    Benda A; Kapusta P; Hof M; Gaus K
    Opt Express; 2014 Feb; 22(3):2973-88. PubMed ID: 24663589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data.
    Waithe D; Schneider F; Chojnacki J; Clausen MP; Shrestha D; de la Serna JB; Eggeling C
    Methods; 2018 May; 140-141():62-73. PubMed ID: 28963070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning fluorescence correlation spectroscopy comes full circle.
    Gunther G; Jameson DM; Aguilar J; Sánchez SA
    Methods; 2018 May; 140-141():52-61. PubMed ID: 29408224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-talk-free fluorescence cross-correlation spectroscopy by the switching method.
    Takahashi Y; Nishimura J; Suzuki A; Ishibashi K; Kinjo M; Miyawaki A
    Cell Struct Funct; 2008; 33(1):143-50. PubMed ID: 18931453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative study of protein-protein interactions in live cell by dual-color fluorescence correlation spectroscopy.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Methods Mol Biol; 2014; 1076():683-98. PubMed ID: 24108650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.
    Pandžić E; Abu-Arish A; Whan RM; Hanrahan JW; Wiseman PW
    Methods; 2018 May; 140-141():126-139. PubMed ID: 29454860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method.
    Digman MA; Wiseman PW; Horwitz AR; Gratton E
    Biophys J; 2009 Jan; 96(2):707-16. PubMed ID: 19167315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of fluorescence correlation spectroscopy (FCS) to measure the dynamics of fluorescent proteins in living cells.
    Weidemann T
    Methods Mol Biol; 2014; 1076():539-55. PubMed ID: 24108643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circle scanning STED fluorescence correlation spectroscopy to quantify membrane dynamics and compartmentalization.
    Maraspini R; Beutel O; Honigmann A
    Methods; 2018 May; 140-141():188-197. PubMed ID: 29258923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic range and background filtering in raster image correlation spectroscopy.
    DE Mets R; Delon A; Balland M; Destaing O; Wang I
    J Microsc; 2020 Aug; 279(2):123-138. PubMed ID: 32441342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells.
    Davey RJ; Digman MA; Gratton E; Moens PDJ
    Methods; 2018 May; 140-141():119-125. PubMed ID: 29242135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbitrary-Region Raster Image Correlation Spectroscopy.
    Hendrix J; Dekens T; Schrimpf W; Lamb DC
    Biophys J; 2016 Oct; 111(8):1785-1796. PubMed ID: 27760364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrally resolved fluorescence correlation spectroscopy based on global analysis.
    Previte MJ; Pelet S; Kim KH; Buehler C; So PT
    Anal Chem; 2008 May; 80(9):3277-84. PubMed ID: 18351754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentials and pitfalls of inverse fluorescence correlation spectroscopy.
    Wennmalm S
    Methods; 2018 May; 140-141():23-31. PubMed ID: 29397309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.