BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 29408413)

  • 1. Regulation of fibrosis in muscular dystrophy.
    Smith LR; Barton ER
    Matrix Biol; 2018 Aug; 68-69():602-615. PubMed ID: 29408413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle fibrosis: an overview.
    Mahdy MAA
    Cell Tissue Res; 2019 Mar; 375(3):575-588. PubMed ID: 30421315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy.
    Morales MG; Cabello-Verrugio C; Santander C; Cabrera D; Goldschmeding R; Brandan E
    J Pathol; 2011 Dec; 225(4):490-501. PubMed ID: 21826667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease.
    Serrano AL; Mann CJ; Vidal B; Ardite E; Perdiguero E; Muñoz-Cánoves P
    Curr Top Dev Biol; 2011; 96():167-201. PubMed ID: 21621071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profiling of muscles from Fukuyama-type congenital muscular dystrophy and laminin-alpha 2 deficient congenital muscular dystrophy; is congenital muscular dystrophy a primary fibrotic disease?
    Taniguchi M; Kurahashi H; Noguchi S; Sese J; Okinaga T; Tsukahara T; Guicheney P; Ozono K; Nishino I; Morishita S; Toda T
    Biochem Biophys Res Commun; 2006 Apr; 342(2):489-502. PubMed ID: 16487936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse Models of Muscle Fibrosis.
    Serrano AL; Muñoz-Cánoves P
    Methods Mol Biol; 2021; 2299():357-370. PubMed ID: 34028754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halofuginone and muscular dystrophy.
    Pines M; Halevy O
    Histol Histopathol; 2011 Jan; 26(1):135-46. PubMed ID: 21117034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wasting mechanisms in muscular dystrophy.
    Shin J; Tajrishi MM; Ogura Y; Kumar A
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2266-79. PubMed ID: 23669245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of transforming growth factor-beta 1 and its relation to endomysial fibrosis in progressive muscular dystrophy.
    Yamazaki M; Minota S; Sakurai H; Miyazono K; Yamada A; Kanazawa I; Kawai M
    Am J Pathol; 1994 Feb; 144(2):221-6. PubMed ID: 8311110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular matrix-driven congenital muscular dystrophies.
    Mohassel P; Foley AR; Bönnemann CG
    Matrix Biol; 2018 Oct; 71-72():188-204. PubMed ID: 29933045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.
    Gillies AR; Chapman MA; Bushong EA; Deerinck TJ; Ellisman MH; Lieber RL
    J Physiol; 2017 Feb; 595(4):1159-1171. PubMed ID: 27859324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle in health and disease.
    Morgan J; Partridge T
    Dis Model Mech; 2020 Feb; 13(2):. PubMed ID: 32066552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers.
    Gonzalez D; Contreras O; Rebolledo DL; Espinoza JP; van Zundert B; Brandan E
    PLoS One; 2017; 12(5):e0177649. PubMed ID: 28520806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles.
    Cabello-Verrugio C; Morales MG; Cabrera D; Vio CP; Brandan E
    J Cell Mol Med; 2012 Apr; 16(4):752-64. PubMed ID: 21645240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.
    Chapman MA; Mukund K; Subramaniam S; Brenner D; Lieber RL
    Am J Physiol Cell Physiol; 2017 Feb; 312(2):C131-C143. PubMed ID: 27881411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine.
    Bernasconi P; Torchiana E; Confalonieri P; Brugnoni R; Barresi R; Mora M; Cornelio F; Morandi L; Mantegazza R
    J Clin Invest; 1995 Aug; 96(2):1137-44. PubMed ID: 7635950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy.
    Durbeej M; Sawatzki SM; Barresi R; Schmainda KM; Allamand V; Michele DE; Campbell KP
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8910-5. PubMed ID: 12851463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrins during muscle development and in muscular dystrophies.
    Gullberg D; Velling T; Lohikangas L; Tiger CF
    Front Biosci; 1998 Oct; 3():D1039-50. PubMed ID: 9778539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal injury initiates pervasive fibrogenesis in skeletal muscle.
    Brightwell CR; Hanson ME; El Ayadi A; Prasai A; Wang Y; Finnerty CC; Fry CS
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C277-C287. PubMed ID: 32432932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle fibroblasts in health and disease.
    Chapman MA; Meza R; Lieber RL
    Differentiation; 2016 Sep; 92(3):108-115. PubMed ID: 27282924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.