BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29408598)

  • 21. Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions.
    Kochan TJ; Shoshiev MS; Hastie JL; Somers MJ; Plotnick YM; Gutierrez-Munoz DF; Foss ED; Schubert AM; Smith AD; Zimmerman SK; Carlson PE; Hanna PC
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30185513
    [No Abstract]   [Full Text] [Related]  

  • 22. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts.
    Heeg D; Burns DA; Cartman ST; Minton NP
    PLoS One; 2012; 7(2):e32381. PubMed ID: 22384234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor.
    Bhattacharjee D; Francis MB; Ding X; McAllister KN; Shrestha R; Sorg JA
    J Bacteriol; 2015 Dec; 198(5):777-86. PubMed ID: 26668265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of ChromID C. difficile agar and cycloserine-cefoxitin-fructose agar for the recovery of Clostridium difficile.
    Boseiwaqa LV; Foster NF; Thean SK; Squire MM; Riley TV; Carson KC
    Pathology; 2013 Aug; 45(5):495-500. PubMed ID: 23846295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separate isolation of Clostridium difficile spores and vegetative cells from the feces of newborn infants.
    Miyazaki S; Matsunaga T; Kawasaki K; Kobayashi I; Tada H; Yamaguchi K; Goto S
    Microbiol Immunol; 1992; 36(2):131-8. PubMed ID: 1584078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical and chemical factors influencing the germination of Clostridium difficile spores.
    Wheeldon LJ; Worthington T; Hilton AC; Elliott TS; Lambert PA
    J Appl Microbiol; 2008 Dec; 105(6):2223-30. PubMed ID: 19120667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an optimized broth enrichment culture medium for the isolation of Clostridium difficile.
    Connor MC; McGrath JW; McMullan G; Marks N; Fairley DJ
    Anaerobe; 2018 Dec; 54():92-99. PubMed ID: 30118894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of cycloserine-cefoxitin fructose agar (CCFA), CCFA with horse blood and taurocholate, and cycloserine-cefoxitin mannitol broth with taurocholate and lysozyme for recovery of Clostridium difficile isolates from fecal samples.
    Tyrrell KL; Citron DM; Leoncio ES; Merriam CV; Goldstein EJ
    J Clin Microbiol; 2013 Sep; 51(9):3094-6. PubMed ID: 23804392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile.
    Wilson KH; Kennedy MJ; Fekety FR
    J Clin Microbiol; 1982 Mar; 15(3):443-6. PubMed ID: 7076817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New selective medium for isolating Clostridium difficile from faeces.
    Aspinall ST; Hutchinson DN
    J Clin Pathol; 1992 Sep; 45(9):812-4. PubMed ID: 1401214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of spores of Clostridium difficile altered by heat or alkali.
    Kamiya S; Yamakawa K; Ogura H; Nakamura S
    J Med Microbiol; 1989 Mar; 28(3):217-21. PubMed ID: 2926793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Value of lysozyme agar incorporation and alkaline thioglycollate exposure for the environmental recovery of Clostridium difficile.
    Wilcox MH; Fawley WN; Parnell P
    J Hosp Infect; 2000 Jan; 44(1):65-9. PubMed ID: 10633056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro.
    Mooyottu S; Flock G; Venkitanarayanan K
    J Med Microbiol; 2017 Aug; 66(8):1229-1234. PubMed ID: 28786786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination.
    Shrestha R; Sorg JA
    Anaerobe; 2018 Feb; 49():41-47. PubMed ID: 29221987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of supplemented Brucella agar and modified Clostridium difficile agar for antimicrobial susceptibility testing of Clostridium difficile.
    Kim GH; Kim J; Pai H; Kang JO
    Ann Lab Med; 2014 Nov; 34(6):439-45. PubMed ID: 25368819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of natural products on several stages of the spore cycle of Clostridium difficile in vitro.
    Roshan N; Riley TV; Hammer KA
    J Appl Microbiol; 2018 Sep; 125(3):710-723. PubMed ID: 29675852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection.
    Rätsep M; Kõljalg S; Sepp E; Smidt I; Truusalu K; Songisepp E; Stsepetova J; Naaber P; Mikelsaar RH; Mikelsaar M
    Anaerobe; 2017 Oct; 47():94-103. PubMed ID: 28465256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of Hospital Disinfectants against Vegetative Cells and Spores of Clostridioides difficile Embedded in Biofilms.
    Rashid T; Haghighi F; Hasan I; Bassères E; Alam MJ; Sharma SV; Lai D; DuPont HL; Garey KW
    Antimicrob Agents Chemother; 2019 Dec; 64(1):. PubMed ID: 31611365
    [No Abstract]   [Full Text] [Related]  

  • 40. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro.
    Liggins M; Ramirez N; Magnuson N; Abel-Santos E
    J Bacteriol; 2011 Jun; 193(11):2776-83. PubMed ID: 21478359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.