BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29408627)

  • 1. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier.
    Dou Y; Wang J; Yang J; Zhang C
    PLoS One; 2012; 7(4):e35666. PubMed ID: 22558194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of features for catalytic residue prediction in novel folds.
    Youn E; Peters B; Radivojac P; Mooney SD
    Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey of Computational Approaches for Prediction of DNA-Binding Residues on Protein Surfaces.
    Xiong Y; Zhu X; Dai H; Wei DQ
    Methods Mol Biol; 2018; 1754():223-234. PubMed ID: 29536446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction.
    Kauffman C; Karypis G
    Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases.
    Yu C; Zavaljevski N; Desai V; Reifman J
    Proteins; 2009 Feb; 74(2):449-60. PubMed ID: 18636476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins.
    Zheng C; Wang M; Takemoto K; Akutsu T; Zhang Z; Song J
    PLoS One; 2012; 7(11):e49716. PubMed ID: 23166753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of protein catalytic residues at high precision using local network properties.
    Slama P; Filippis I; Lappe M
    BMC Bioinformatics; 2008 Dec; 9():517. PubMed ID: 19055796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site prediction using evolutionary and structural information.
    Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K
    Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relationship between catalytic residues and their protein contact number.
    Huang SW; Yu SH; Shih CH; Guan HW; Huang TT; Hwang JK
    Curr Protein Pept Sci; 2011 Sep; 12(6):574-9. PubMed ID: 21787303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting enzyme functional surfaces and locating key residues automatically from structures.
    Tseng YY; Liang J
    Ann Biomed Eng; 2007 Jun; 35(6):1037-42. PubMed ID: 17294116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.