BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29408627)

  • 21. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global sequence properties for superfamily prediction: a machine learning approach.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    J Integr Bioinform; 2009 Aug; 6(1):109. PubMed ID: 20134076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From sequence to enzyme mechanism using multi-label machine learning.
    De Ferrari L; Mitchell JB
    BMC Bioinformatics; 2014 May; 15():150. PubMed ID: 24885296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PON-P2: prediction method for fast and reliable identification of harmful variants.
    Niroula A; Urolagin S; Vihinen M
    PLoS One; 2015; 10(2):e0117380. PubMed ID: 25647319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Highly Sensitive Model Based on Graph Neural Networks for Enzyme Key Catalytic Residue Prediction.
    Shen X; Zhang S; Long J; Chen C; Wang M; Cui Z; Chen B; Tan T
    J Chem Inf Model; 2023 Jul; 63(14):4277-4290. PubMed ID: 37399293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model.
    Savojardo C; Fariselli P; Martelli PL; Casadio R
    Bioinformatics; 2017 Jun; 33(11):1656-1663. PubMed ID: 28130235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.