These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29408792)

  • 21. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.
    Pedersen M; Omidvarnia A; Zalesky A; Jackson GD
    Neuroimage; 2018 Nov; 181():85-94. PubMed ID: 29890326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems.
    Griffa A; Ricaud B; Benzi K; Bresson X; Daducci A; Vandergheynst P; Thiran JP; Hagmann P
    Neuroimage; 2017 Jul; 155():490-502. PubMed ID: 28412440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.
    Maggioni E; Tana MG; Arrigoni F; Zucca C; Bianchi AM
    J Neurosci Methods; 2014 May; 228():86-99. PubMed ID: 24675050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations.
    van den Heuvel MP; de Lange SC; Zalesky A; Seguin C; Yeo BTT; Schmidt R
    Neuroimage; 2017 May; 152():437-449. PubMed ID: 28167349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cohesive parcellation of the human brain using resting-state fMRI.
    Nemani A; Lowe MJ
    J Neurosci Methods; 2022 Jul; 377():109629. PubMed ID: 35618164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.
    Mechling AE; Hübner NS; Lee HL; Hennig J; von Elverfeldt D; Harsan LA
    Neuroimage; 2014 Aug; 96():203-15. PubMed ID: 24718287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling.
    Popovych OV; Jung K; Manos T; Diaz-Pier S; Hoffstaedter F; Schreiber J; Yeo BTT; Eickhoff SB
    Neuroimage; 2021 Aug; 236():118201. PubMed ID: 34033913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimodal Hyper-connectivity Networks for MCI Classification.
    Li Y; Gao X; Jie B; Yap PT; Kim MJ; Wee CY; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():433-441. PubMed ID: 29568824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of random matrix theory in the discovery of resting state brain networks.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2021 Apr; 77():69-87. PubMed ID: 33326838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Test-retest reliability of spatial patterns from resting-state functional MRI using the restricted Boltzmann machine and hierarchically organized spatial patterns from the deep belief network.
    Kim HC; Jang H; Lee JH
    J Neurosci Methods; 2020 Jan; 330():108451. PubMed ID: 31626847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.
    Thompson WH; Fransson P
    Neuroimage; 2015 Nov; 121():227-42. PubMed ID: 26169321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Resolution Functional Connectivity Density: Hub Locations, Sensitivity, Specificity, Reproducibility, and Reliability.
    Tomasi D; Shokri-Kojori E; Volkow ND
    Cereb Cortex; 2016 Jul; 26(7):3249-59. PubMed ID: 26223259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gender classification using mesh networks on multiresolution multitask fMRI data.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2020 Apr; 14(2):460-476. PubMed ID: 30671775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Organization of Functional Brain Networks Revealed by Hybrid Spatiotemporal Deep Learning.
    Zhang W; Zhao S; Hu X; Dong Q; Huang H; Zhang S; Zhao Y; Dai H; Ge F; Guo L; Liu T
    Brain Connect; 2020 Mar; 10(2):72-82. PubMed ID: 32056450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disrupted functional brain connectome in individuals at risk for Alzheimer's disease.
    Wang J; Zuo X; Dai Z; Xia M; Zhao Z; Zhao X; Jia J; Han Y; He Y
    Biol Psychiatry; 2013 Mar; 73(5):472-81. PubMed ID: 22537793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connectivity-based change point detection for large-size functional networks.
    Jeong SO; Pae C; Park HJ
    Neuroimage; 2016 Dec; 143():353-363. PubMed ID: 27622394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective.
    Zuo XN; Xing XX
    Neurosci Biobehav Rev; 2014 Sep; 45():100-18. PubMed ID: 24875392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.