BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29408856)

  • 1. Quick and easy sample preparation without resin embedding for the bone quality assessment of fresh calcified bone using fourier transform infrared imaging.
    Kimura-Suda H; Takahata M; Ito T; Shimizu T; Kanazawa K; Ota M; Iwasaki N
    PLoS One; 2018; 13(2):e0189650. PubMed ID: 29408856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy.
    Aparicio S; Doty SB; Camacho NP; Paschalis EP; Spevak L; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 2002 May; 70(5):422-9. PubMed ID: 12055658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared microspectroscopic analysis identifies alterations in mineral properties in bones from mice transgenic for type X collagen.
    Paschalis EP; Jacenko O; Olsen B; Mendelsohn R; Boskey AL
    Bone; 1996 Aug; 19(2):151-6. PubMed ID: 8853859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice.
    Camacho NP; Carroll P; Raggio CL
    Calcif Tissue Int; 2003 May; 72(5):604-9. PubMed ID: 12574874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metaplastic woven bone in bone metastases: A Fourier-transform infrared analysis and imaging of bone quality (FTIR).
    Chappard D; Mabilleau G; Masson C; Tahla A; Legrand E
    Morphologie; 2018 Jun; 102(337):69-77. PubMed ID: 29530649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia.
    Faibish D; Gomes A; Boivin G; Binderman I; Boskey A
    Bone; 2005 Jan; 36(1):6-12. PubMed ID: 15663997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier Transform Infrared Imaging of Bone.
    Paschalis EP
    Methods Mol Biol; 2019; 1914():641-649. PubMed ID: 30729490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Changes in Composition in Response to Treatment of a Mouse Model of Osteogenesis Imperfecta Sex-dependent?
    Boskey AL; Marino J; Spevak L; Pleshko N; Doty S; Carter EM; Raggio CL
    Clin Orthop Relat Res; 2015 Aug; 473(8):2587-98. PubMed ID: 25903941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An infrared study of the interaction of polymethyl methacrylate with the protein and mineral components of bone.
    Pleshko NL; Boskey AL; Mendelsohn R
    J Histochem Cytochem; 1992 Sep; 40(9):1413-7. PubMed ID: 1506677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of type X collagen in endochondral ossification as deduced by Fourier transform infrared microscopy analysis.
    Paschalis EP; Jacenko O; Olsen B; deCrombrugghe B; Boskey AL
    Connect Tissue Res; 1996; 35(1-4):371-7. PubMed ID: 9084677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy.
    Imbert L; Gourion-Arsiquaud S; Villarreal-Ramirez E; Spevak L; Taleb H; van der Meulen MCH; Mendelsohn R; Boskey AL
    PLoS One; 2018; 13(9):e0202833. PubMed ID: 30180177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy.
    Mata-Miranda MM; Guerrero-Ruiz M; Gonzalez-Fuentes JR; Hernandez-Toscano CM; Garcia-Andino JR; Sanchez-Brito M; Vazquez-Zapien GJ
    Biomed Res Int; 2019; 2019():1241452. PubMed ID: 31662967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone.
    Gu C; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():25-37. PubMed ID: 23257327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of fetal bone structure and mineralization in IGF-I deficient mice using synchrotron radiation microtomography and Fourier transform infrared spectroscopy.
    Burghardt AJ; Wang Y; Elalieh H; Thibault X; Bikle D; Peyrin F; Majumdar S
    Bone; 2007 Jan; 40(1):160-8. PubMed ID: 16905376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared microscopy of calcified turkey leg tendon.
    Gadaleta SJ; Camacho NP; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):17-23. PubMed ID: 8825234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.
    Mieczkowska A; Mansur SA; Irwin N; Flatt PR; Chappard D; Mabilleau G
    Bone; 2015 Jul; 76():31-9. PubMed ID: 25813583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared imaging of bone.
    Paschalis EP
    Methods Mol Biol; 2012; 816():517-25. PubMed ID: 22130948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls.
    Boskey AL; Moore DJ; Amling M; Canalis E; Delany AM
    J Bone Miner Res; 2003 Jun; 18(6):1005-11. PubMed ID: 12817752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frozen thin-sections of rapidly forming bone: bone cell ultrastructure.
    Gay C; Schraer H
    Calcif Tissue Res; 1975 Nov; 19(1):39-49. PubMed ID: 1201464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.