BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29408856)

  • 21. Preparation of thin-sections of painting fragments: classical and innovative strategies.
    Pouyet E; Lluveras-Tenorio A; Nevin A; Saviello D; Sette F; Cotte M
    Anal Chim Acta; 2014 Apr; 822():51-9. PubMed ID: 24725747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.
    Aydin HM; Hu B; Suso JS; El Haj A; Yang Y
    Analyst; 2011 Feb; 136(4):775-80. PubMed ID: 21152629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An FT-IR microscopic investigation of the effects of tissue preservation on bone.
    Pleshko NL; Boskey AL; Mendelsohn R
    Calcif Tissue Int; 1992 Jul; 51(1):72-7. PubMed ID: 1393781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy.
    Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB
    Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.
    Courtland HW; Nasser P; Goldstone AB; Spevak L; Boskey AL; Jepsen KJ
    Calcif Tissue Int; 2008 Nov; 83(5):342-53. PubMed ID: 18855037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cell in absence of aggregation artifacts.
    Dubochet J; Sartori Blanc N
    Micron; 2001 Jan; 32(1):91-9. PubMed ID: 10900384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of thin sections for Fourier Transform-Infrared microscopy: a new embedding medium for cellulosic samples.
    Boylston EK; Morris NM
    Biotech Histochem; 1997 Jul; 72(4):213-22. PubMed ID: 9290912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Producing frozen sections of calcified bone.
    McElroy HH; Shih MS; Parfitt AM
    Biotech Histochem; 1993 Jan; 68(1):50-5. PubMed ID: 8448250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation.
    Boskey AL; DiCarlo E; Paschalis E; West P; Mendelsohn R
    Osteoporos Int; 2005 Dec; 16(12):2031-8. PubMed ID: 16088360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breast cancer and melanoma cell line identification by FTIR imaging after formalin-fixation and paraffin-embedding.
    Verdonck M; Wald N; Janssis J; Yan P; Meyer C; Legat A; Speiser DE; Desmedt C; Larsimont D; Sotiriou C; Goormaghtigh E
    Analyst; 2013 Jul; 138(14):4083-91. PubMed ID: 23689823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study.
    Bozkurt O; Bilgin MD; Evis Z; Pleshko N; Severcan F
    Appl Spectrosc; 2016 Dec; 70(12):2005-2015. PubMed ID: 27680083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy.
    Reiche I; Lebon M; Chadefaux C; Müller K; Le Hô AS; Gensch M; Schade U
    Anal Bioanal Chem; 2010 Jul; 397(6):2491-9. PubMed ID: 20506017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid preparation of fresh frozen tissue-engineered bone sections for histological, histomorphological and histochemical analyses.
    Tadokoro M; Hattori K; Takakura Y; Ohgushi H
    Biomed Mater Eng; 2006; 16(6):405-13. PubMed ID: 17119279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FTIR microspectroscopic analysis of normal human cortical and trabecular bone.
    Paschalis EP; Betts F; DiCarlo E; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1997 Dec; 61(6):480-6. PubMed ID: 9383275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].
    Suda HK
    Clin Calcium; 2015 Oct; 25(10):1483-90. PubMed ID: 26412727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector.
    Marcott C; Reeder RC; Paschalis EP; Tatakis DN; Boskey AL; Mendelsohn R
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):109-15. PubMed ID: 9551643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.
    Wang ZX; Lloyd AA; Burket JC; Gourion-Arsiquaud S; Donnelly E
    Bone; 2016 Mar; 84():237-244. PubMed ID: 26780445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman and Fourier transform infrared imaging for characterization of bone material properties.
    Taylor EA; Donnelly E
    Bone; 2020 Oct; 139():115490. PubMed ID: 32569874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.