These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp. Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442 [TBL] [Abstract][Full Text] [Related]
3. Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites. Dios JR; García-Astrain C; Costa P; Viana JC; Lanceros-Méndez S Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31052175 [TBL] [Abstract][Full Text] [Related]
4. Conductive polymer foam surface improves the performance of a capacitive EEG electrode. Baek HJ; Lee HJ; Lim YG; Park KS IEEE Trans Biomed Eng; 2012 Dec; 59(12):3422-31. PubMed ID: 22961261 [TBL] [Abstract][Full Text] [Related]
5. Performance of conformable, dry EEG sensors. Bradford JC; Burke B; Nguyen C; Slipher GA; Mrozek R; Hairston D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4957-4960. PubMed ID: 30441455 [TBL] [Abstract][Full Text] [Related]
6. Nanofiber web textile dry electrodes for long-term biopotential recording. Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303 [TBL] [Abstract][Full Text] [Related]
8. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063 [TBL] [Abstract][Full Text] [Related]
9. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929 [TBL] [Abstract][Full Text] [Related]
10. Highly Stretchable Dry Electrode Composited with Carbon Nanofiber (CNF) for Wearable Device. Beak DH; Jung H; Kwon D; Lee SA; Yoon S; Kim YJ J Nanosci Nanotechnol; 2020 Aug; 20(8):4708-4713. PubMed ID: 32126645 [TBL] [Abstract][Full Text] [Related]
11. Comb-shaped polymer-based Dry electrodes for EEG/ECG measurements with high user comfort. Chen YH; Op de Beeck M; Vanderheyden L; Mihajlovic V; Grundlehner B; Van Hoof C Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():551-4. PubMed ID: 24109746 [TBL] [Abstract][Full Text] [Related]
12. Dry and noncontact EEG sensors for mobile brain-computer interfaces. Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514 [TBL] [Abstract][Full Text] [Related]
13. Paintable Silicone-Based Corrugated Soft Elastomeric Capacitor for Area Strain Sensing. Liu H; Laflamme S; Kollosche M Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447997 [TBL] [Abstract][Full Text] [Related]
14. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes. Nathan V; Jafari R IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239 [TBL] [Abstract][Full Text] [Related]
15. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs. Lee JH; Hwang JY; Zhu J; Hwang HR; Lee SM; Cheng H; Lee SH; Hwang SW ACS Appl Mater Interfaces; 2018 Jun; 10(25):21184-21190. PubMed ID: 29869498 [TBL] [Abstract][Full Text] [Related]
16. Real-Life Dry-Contact Ear-EEG. Kappel SL; Kidmose P Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575 [TBL] [Abstract][Full Text] [Related]
17. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Dias NS; Carmo JP; Mendes PM; Correia JH Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322 [TBL] [Abstract][Full Text] [Related]
19. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tsang M; Chun YW; Im YM; Khang D; Webster TJ Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694 [TBL] [Abstract][Full Text] [Related]
20. New Flexible Silicone-Based EEG Dry Sensor Material Compositions Exhibiting Improvements in Lifespan, Conductivity, and Reliability. Yu YH; Chen SH; Chang CL; Lin CT; Hairston WD; Mrozek RA Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27809260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]