These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29409383)

  • 1. Variance in State Protection from Exposure to NORM and TENORM Wastes Generated During Unconventional Oil and Gas Operations: Where We Are and Where We Need to Go.
    Ann Glass Geltman E; LeClair N
    New Solut; 2018 Aug; 28(2):240-261. PubMed ID: 29409383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.
    Allard DJ
    Health Phys; 2015 Feb; 108(2):178. PubMed ID: 25551500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative radiological risks derived from different TENORM wastes in Malaysia.
    Ismail B; Teng IL; Muhammad Samudi Y
    Radiat Prot Dosimetry; 2011 Nov; 147(4):600-7. PubMed ID: 21266370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Doses from Disposals of Technologically Enhanced Naturally Occurring Radioactive Materials in Kentucky and Oregon.
    Caffrey EA; Rood AS; Grogan HA; Mangini C; Till JE
    Health Phys; 2023 Jun; 124(6):441-450. PubMed ID: 36799761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The current status of NORM/TENORM industries and establishment of regulatory framework in Korea.
    Chang BU; Kim Y; Oh JJ
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):170-3. PubMed ID: 21493602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes.
    Thakur P; Ward AL; Schaub TM
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43058-43071. PubMed ID: 35091928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose Assessment for Technologically Enhanced Naturally Occurring Radioactive Materials Disposal in Landfills.
    Caffrey EA; Rood AS; Grogan HA; Till JE; Herman K
    Health Phys; 2021 Sep; 121(3):209-224. PubMed ID: 34225352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the disposal of radioactive petroleum industry waste in nonhazardous landfills using risk-based modeling.
    Smith KP; Arnish JJ; Williams GP; Blunt DL
    Environ Sci Technol; 2003 May; 37(10):2060-6. PubMed ID: 12785508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
    Brown SH; Chambers DB
    Health Phys; 2017 Jul; 113(1):13-22. PubMed ID: 28542007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemical signature of NORM waste in Brazilian oil and gas industry.
    De-Paula-Costa GT; Guerrante IC; Costa-de-Moura J; Amorim FC
    J Environ Radioact; 2018 Sep; 189():202-206. PubMed ID: 29694943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).
    Rich AL; Crosby EC
    New Solut; 2013; 23(1):117-35. PubMed ID: 23552651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technologically enhanced naturally occurring radioactive materials.
    Vearrier D; Curtis JA; Greenberg MI
    Clin Toxicol (Phila); 2009 May; 47(5):393-406. PubMed ID: 19492930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiological protection in North American naturally occurring radioactive material industries.
    Chambers DB
    Ann ICRP; 2015 Jun; 44(1 Suppl):202-13. PubMed ID: 25816274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential environmental and regulatory implications of naturally occurring radioactive materials (NORM).
    Paschoa AS
    Appl Radiat Isot; 1998 Mar; 49(3):189-96. PubMed ID: 9451772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NORM management in the oil and gas industry.
    Cowie M; Mously K; Fageeha O; Nassar R
    Ann ICRP; 2012; 41(3-4):318-31. PubMed ID: 23089032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development.
    Walter GR; Benke RR; Pickett DA
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1040-9. PubMed ID: 23019818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What should a radiation regulator do about naturally occurring radioactive material?
    Loy J
    Ann ICRP; 2015 Jun; 44(1 Suppl):197-201. PubMed ID: 25816273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the framework and implementation for clearance of materials from regulated facilities.
    Chen SY; Moeller DW; Dornsife WP; Meyer HR; Lamastra A; Lubenau JO; Strom DJ; Yusko JG
    Health Phys; 2005 Aug; 89(2):115-26. PubMed ID: 16010122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
    Jodłowski P; Macuda J; Nowak J; Nguyen Dinh C
    J Environ Radioact; 2017 Sep; 175-176():34-38. PubMed ID: 28431375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.
    Hilal MA; Attallah MF; Mohamed GY; Fayez-Hassan M
    J Environ Radioact; 2014 Oct; 136():121-6. PubMed ID: 24949581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.