BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29409441)

  • 1. G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs.
    Di Salvo M; Pinatel E; Talà A; Fondi M; Peano C; Alifano P
    BMC Bioinformatics; 2018 Feb; 19(1):36. PubMed ID: 29409441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli.
    Shahmuradov IA; Mohamad Razali R; Bougouffa S; Radovanovic A; Bajic VB
    Bioinformatics; 2017 Feb; 33(3):334-340. PubMed ID: 27694198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases.
    Di Salvo M; Puccio S; Peano C; Lacour S; Alifano P
    BMC Bioinformatics; 2019 Mar; 20(1):117. PubMed ID: 30845912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of putative promoters in 48 eukaryotic genomes on the basis of DNA free energy.
    Yella VR; Kumar A; Bansal M
    Sci Rep; 2018 Mar; 8(1):4520. PubMed ID: 29540741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1.
    Todt TJ; Wels M; Bongers RS; Siezen RS; van Hijum SA; Kleerebezem M
    PLoS One; 2012; 7(9):e45097. PubMed ID: 23028780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using hidden Markov models to investigate G-quadruplex motifs in genomic sequences.
    Yano M; Kato Y
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S15. PubMed ID: 25521044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.
    Albersmeier A; Pfeifer-Sancar K; Rückert C; Kalinowski J
    J Biotechnol; 2017 Sep; 257():99-109. PubMed ID: 28412515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes.
    Dekhtyar M; Morin A; Sakanyan V
    BMC Bioinformatics; 2008 May; 9():233. PubMed ID: 18471287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals.
    Vanet A; Marsan L; Labigne A; Sagot MF
    J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIGffRid: a tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics.
    Touzain F; Schbath S; Debled-Rennesson I; Aigle B; Kucherov G; Leblond P
    BMC Bioinformatics; 2008 Jan; 9():73. PubMed ID: 18237374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPREAD: An ensemble predictor based on DNA autoencoder framework for discriminating promoters in
    Zhou S; Zheng J; Jia C
    Math Biosci Eng; 2022 Sep; 19(12):13294-13305. PubMed ID: 36654047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality annotation of promoter regions for 913 bacterial genomes.
    Rangannan V; Bansal M
    Bioinformatics; 2010 Dec; 26(24):3043-50. PubMed ID: 20956245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes.
    Yella VR; Vanaja A
    Biochimie; 2023 Nov; 214(Pt A):101-111. PubMed ID: 37311475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale computational and statistical analyses of high transcription potentialities in 32 prokaryotic genomes.
    Sinoquet C; Demey S; Braun F
    Nucleic Acids Res; 2008 Jun; 36(10):3332-40. PubMed ID: 18440978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-quadruplexes in promoters throughout the human genome.
    Huppert JL; Balasubramanian S
    Nucleic Acids Res; 2007; 35(2):406-13. PubMed ID: 17169996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters.
    Seghezzi N; Amar P; Koebmann B; Jensen PR; Virolle MJ
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):615-23. PubMed ID: 21243353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iterative strategy combining biophysical criteria and duration hidden Markov models for structural predictions of Chlamydia trachomatis sigma66 promoters.
    Mallios RR; Ojcius DM; Ardell DH
    BMC Bioinformatics; 2009 Aug; 10():271. PubMed ID: 19715597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch.
    Kaplan OI; Berber B; Hekim N; Doluca O
    Nucleic Acids Res; 2016 Nov; 44(19):9083-9095. PubMed ID: 27596596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome.
    Sivaraman K; Seshasayee AS; Swaminathan K; Muthukumaran G; Pennathur G
    Theor Biol Med Model; 2005 May; 2():20. PubMed ID: 15927055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.