BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 29409867)

  • 1. Bone regeneration capacity of magnesium phosphate cements in a large animal model.
    Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A
    Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated bone regeneration through rational design of magnesium phosphate cements.
    Kaiser F; Schröter L; Stein S; Krüger B; Weichhold J; Stahlhut P; Ignatius A; Gbureck U
    Acta Biomater; 2022 Jun; 145():358-371. PubMed ID: 35443213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo.
    Rentsch B; Bernhardt A; Henß A; Ray S; Rentsch C; Schamel M; Gbureck U; Gelinsky M; Rammelt S; Lode A
    Acta Biomater; 2018 Mar; 69():332-341. PubMed ID: 29355718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of in vivo mineral bone cement degradation.
    Kanter B; Geffers M; Ignatius A; Gbureck U
    Acta Biomater; 2014 Jul; 10(7):3279-87. PubMed ID: 24769112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ready-To-Use and Rapidly Biodegradable Magnesium Phosphate Bone Cement: In Vivo Evaluation in Sheep.
    Schröter L; Kaiser F; Preißler AL; Wohlfahrt P; Küppers O; Gbureck U; Ignatius A
    Adv Healthc Mater; 2023 Oct; 12(26):e2300914. PubMed ID: 37224104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the potential of magnesium oxychloride, an amorphous magnesium phosphate, and newberyite as possible bone cement candidates.
    Kaiser F; Schröter L; Wohlfahrt P; Geroneit I; Murek J; Stahlhut P; Weichhold J; Ignatius A; Gbureck U
    J Biomater Appl; 2023 Sep; 38(3):438-454. PubMed ID: 37525613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.
    Wu F; Wei J; Guo H; Chen F; Hong H; Liu C
    Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration.
    Gelli R; Mati L; Ridi F; Baglioni P
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():248-255. PubMed ID: 30573247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.
    Liu W; Zhai D; Huan Z; Wu C; Chang J
    Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress on the application of magnesium phosphate bone cement in bone defect repair: A review.
    Tian Y; Sun R; Li Y; Liu P; Fan B; Xue Y
    Biomed Mater Eng; 2024; 35(3):265-278. PubMed ID: 38728179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An injectable bioactive magnesium phosphate cement incorporating carboxymethyl chitosan for bone regeneration.
    Yu L; Xia K; Gong C; Chen J; Li W; Zhao Y; Guo W; Dai H
    Int J Biol Macromol; 2020 Oct; 160():101-111. PubMed ID: 32450325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics.
    Schröter L; Kaiser F; Küppers O; Stein S; Krüger B; Wohlfahrt P; Geroneit I; Stahlhut P; Gbureck U; Ignatius A
    Dent Mater; 2024 Mar; 40(3):508-519. PubMed ID: 38199893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration capacity of newly developed spherical magnesium phosphate cement granules.
    Fuchs A; Kreczy D; Brückner T; Gbureck U; Stahlhut P; Bengel M; Hoess A; Nies B; Bator J; Klammert U; Linz C; Ewald A
    Clin Oral Investig; 2022 Mar; 26(3):2619-2633. PubMed ID: 34686919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility.
    Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.
    Wu F; Su J; Wei J; Guo H; Liu C
    Biomed Mater; 2008 Dec; 3(4):044105. PubMed ID: 19029607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.
    Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U
    Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Gunnella F; Kunisch E; Bungartz M; Maenz S; Horbert V; Xin L; Mika J; Borowski J; Bischoff S; Schubert H; Hortschansky P; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O
    Spine J; 2017 Nov; 17(11):1699-1711. PubMed ID: 28619686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement.
    van Houdt CI; Preethanath RS; van Oirschot BA; Zwarts PH; Ulrich DJ; Anil S; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2016 Feb; 104(2):483-92. PubMed ID: 26454146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.