BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 29409960)

  • 1. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.
    Makropoulos A; Robinson EC; Schuh A; Wright R; Fitzgibbon S; Bozek J; Counsell SJ; Steinweg J; Vecchiato K; Passerat-Palmbach J; Lenz G; Mortari F; Tenev T; Duff EP; Bastiani M; Cordero-Grande L; Hughes E; Tusor N; Tournier JD; Hutter J; Price AN; Teixeira RPAG; Murgasova M; Victor S; Kelly C; Rutherford MA; Smith SM; Edwards AD; Hajnal JV; Jenkinson M; Rueckert D
    Neuroimage; 2018 Jun; 173():88-112. PubMed ID: 29409960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants.
    Fitzgibbon SP; Harrison SJ; Jenkinson M; Baxter L; Robinson EC; Bastiani M; Bozek J; Karolis V; Cordero Grande L; Price AN; Hughes E; Makropoulos A; Passerat-Palmbach J; Schuh A; Gao J; Farahibozorg SR; O'Muircheartaigh J; Ciarrusta J; O'Keeffe C; Brandon J; Arichi T; Rueckert D; Hajnal JV; Edwards AD; Smith SM; Duff E; Andersson J
    Neuroimage; 2020 Dec; 223():117303. PubMed ID: 32866666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.
    Bastiani M; Andersson JLR; Cordero-Grande L; Murgasova M; Hutter J; Price AN; Makropoulos A; Fitzgibbon SP; Hughes E; Rueckert D; Victor S; Rutherford M; Edwards AD; Smith SM; Tournier JD; Hajnal JV; Jbabdi S; Sotiropoulos SN
    Neuroimage; 2019 Jan; 185():750-763. PubMed ID: 29852283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project.
    Bozek J; Makropoulos A; Schuh A; Fitzgibbon S; Wright R; Glasser MF; Coalson TS; O'Muircheartaigh J; Hutter J; Price AN; Cordero-Grande L; Teixeira RPAG; Hughes E; Tusor N; Baruteau KP; Rutherford MA; Edwards AD; Hajnal JV; Smith SM; Rueckert D; Jenkinson M; Robinson EC
    Neuroimage; 2018 Oct; 179():11-29. PubMed ID: 29890325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
    Autio JA; Glasser MF; Ose T; Donahue CJ; Bastiani M; Ohno M; Kawabata Y; Urushibata Y; Murata K; Nishigori K; Yamaguchi M; Hori Y; Yoshida A; Go Y; Coalson TS; Jbabdi S; Sotiropoulos SN; Kennedy H; Smith S; Van Essen DC; Hayashi T
    Neuroimage; 2020 Jul; 215():116800. PubMed ID: 32276072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic pipeline for atlas-based fetal and neonatal brain segmentation and analysis.
    Urru A; Nakaki A; Benkarim O; Crovetto F; Segalés L; Comte V; Hahner N; Eixarch E; Gratacos E; Crispi F; Piella G; González Ballester MA
    Comput Methods Programs Biomed; 2023 Mar; 230():107334. PubMed ID: 36682108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain.
    Shen DD; Bao SL; Wang Y; Chen YC; Zhang YC; Li XC; Ding YC; Jia ZZ
    Pediatr Radiol; 2023 Jul; 53(8):1685-1697. PubMed ID: 36884052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping developmental regionalization and patterns of cortical surface area from 29 post-menstrual weeks to 2 years of age.
    Huang Y; Wu Z; Wang F; Hu D; Li T; Guo L; Wang L; Lin W; Li G
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2121748119. PubMed ID: 35939665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The minimal preprocessing pipelines for the Human Connectome Project.
    Glasser MF; Sotiropoulos SN; Wilson JA; Coalson TS; Fischl B; Andersson JL; Xu J; Jbabdi S; Webster M; Polimeni JR; Van Essen DC; Jenkinson M;
    Neuroimage; 2013 Oct; 80():105-24. PubMed ID: 23668970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Cortical Thickness Morphometry of Neonatal Brain and Systematic Evaluation Using Multi-Site MRI Datasets.
    Liu M; Lepage C; Kim SY; Jeon S; Kim SH; Simon JP; Tanaka N; Yuan S; Islam T; Peng B; Arutyunyan K; Surento W; Kim J; Jahanshad N; Styner MA; Toga AW; Barkovich AJ; Xu D; Evans AC; Kim H
    Front Neurosci; 2021; 15():650082. PubMed ID: 33815050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor network factorizations: Relationships between brain structural connectomes and traits.
    Zhang Z; Allen GI; Zhu H; Dunson D
    Neuroimage; 2019 Aug; 197():330-343. PubMed ID: 31029870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction.
    Wang L; Wu Z; Chen L; Sun Y; Lin W; Li G
    Nat Protoc; 2023 May; 18(5):1488-1509. PubMed ID: 36869216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-driven registration method for the structure-informed segmentation of diffusion MR images.
    Esteban O; Zosso D; Daducci A; Bach-Cuadra M; Ledesma-Carbayo MJ; Thiran JP; Santos A
    Neuroimage; 2016 Oct; 139():450-461. PubMed ID: 27165759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking contemporary high resolution magnetic resonance imaging to the von Economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure.
    Scholtens LH; de Reus MA; van den Heuvel MP
    Hum Brain Mapp; 2015 Aug; 36(8):3038-46. PubMed ID: 25988402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission.
    Wu X; Auerbach EJ; Vu AT; Moeller S; Van de Moortele PF; Yacoub E; Uğurbil K
    Neuroimage; 2019 Jan; 184():396-408. PubMed ID: 30237033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parcellation of the neonatal cortex using Surface-based Melbourne Children's Regional Infant Brain atlases (M-CRIB-S).
    Adamson CL; Alexander B; Ball G; Beare R; Cheong JLY; Spittle AJ; Doyle LW; Anderson PJ; Seal ML; Thompson DK
    Sci Rep; 2020 Mar; 10(1):4359. PubMed ID: 32152381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding dynamics to the Human Connectome Project with MEG.
    Larson-Prior LJ; Oostenveld R; Della Penna S; Michalareas G; Prior F; Babajani-Feremi A; Schoffelen JM; Marzetti L; de Pasquale F; Di Pompeo F; Stout J; Woolrich M; Luo Q; Bucholz R; Fries P; Pizzella V; Romani GL; Corbetta M; Snyder AZ;
    Neuroimage; 2013 Oct; 80():190-201. PubMed ID: 23702419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid high-resolution anatomical MRI atlas with sub-parcellation of cortical gyri using resting fMRI.
    Joshi AA; Choi S; Liu Y; Chong M; Sonkar G; Gonzalez-Martinez J; Nair D; Wisnowski JL; Haldar JP; Shattuck DW; Damasio H; Leahy RM
    J Neurosci Methods; 2022 May; 374():109566. PubMed ID: 35306036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.