These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29410401)

  • 1. Ub-ProT reveals global length and composition of protein ubiquitylation in cells.
    Tsuchiya H; Burana D; Ohtake F; Arai N; Kaiho A; Komada M; Tanaka K; Saeki Y
    Nat Commun; 2018 Feb; 9(1):524. PubMed ID: 29410401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase.
    Ji Z; Li H; Peterle D; Paulo JA; Ficarro SB; Wales TE; Marto JA; Gygi SP; Engen JR; Rapoport TA
    Mol Cell; 2022 Feb; 82(3):570-584.e8. PubMed ID: 34951965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex.
    Lee HG; Lemmon AA; Lima CD
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213703120. PubMed ID: 36574706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome.
    Tsuchiya H; Ohtake F; Arai N; Kaiho A; Yasuda S; Tanaka K; Saeki Y
    Mol Cell; 2017 May; 66(4):488-502.e7. PubMed ID: 28525741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification.
    Tsuchiya H; Tanaka K; Saeki Y
    Biochem Biophys Res Commun; 2013 Jun; 436(2):223-9. PubMed ID: 23726910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis.
    Higgins R; Kabbaj MH; Sherwin D; Howell LA; Hatcher A; Tomko RJ; Wang Y
    Cell Rep; 2020 Jul; 32(2):107898. PubMed ID: 32668237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48.
    Williams C; Dong KC; Arkinson C; Martin A
    Mol Cell; 2023 Mar; 83(5):759-769.e7. PubMed ID: 36736315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A AAA ATPase Cdc48 with a cofactor Ubx2 facilitates ubiquitylation of a mitochondrial fusion-promoting factor Fzo1 for proteasomal degradation.
    Nahar S; Chowdhury A; Ogura T; Esaki M
    J Biochem; 2020 Mar; 167(3):279-286. PubMed ID: 31804690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins.
    Tyrrell A; Flick K; Kleiger G; Zhang H; Deshaies RJ; Kaiser P
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19796-801. PubMed ID: 21041680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit.
    Chojnacki M; Mansour W; Hameed DS; Singh RK; El Oualid F; Rosenzweig R; Nakasone MA; Yu Z; Glaser F; Kay LE; Fushman D; Ovaa H; Glickman MH
    Cell Chem Biol; 2017 Apr; 24(4):443-457.e6. PubMed ID: 28330605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying Protein Ubiquitylation in Yeast.
    Hovsepian J; Becuwe M; Kleifeld O; Glickman MH; Léon S
    Methods Mol Biol; 2016; 1449():117-42. PubMed ID: 27613031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals.
    Phu L; Izrael-Tomasevic A; Matsumoto ML; Bustos D; Dynek JN; Fedorova AV; Bakalarski CE; Arnott D; Deshayes K; Dixit VM; Kelley RF; Vucic D; Kirkpatrick DS
    Mol Cell Proteomics; 2011 May; 10(5):M110.003756. PubMed ID: 21048196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23.
    Ossareh-Nazari B; Cohen M; Dargemont C
    Exp Cell Res; 2010 Dec; 316(20):3351-7. PubMed ID: 20846524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.
    Fushman D; Walker O
    J Mol Biol; 2010 Jan; 395(4):803-14. PubMed ID: 19853612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation.
    Gödderz D; Heinen C; Marchese FP; Kurz T; Acs K; Dantuma NP
    Sci Rep; 2015 Jan; 5():7615. PubMed ID: 25556859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone.
    Rumpf S; Jentsch S
    Mol Cell; 2006 Jan; 21(2):261-9. PubMed ID: 16427015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into ubiquitin chain architecture using Ub-clipping.
    Swatek KN; Usher JL; Kueck AF; Gladkova C; Mevissen TET; Pruneda JN; Skern T; Komander D
    Nature; 2019 Aug; 572(7770):533-537. PubMed ID: 31413367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains.
    Ohtake F; Tsuchiya H; Saeki Y; Tanaka K
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1401-E1408. PubMed ID: 29378950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains.
    Villamil M; Xiao W; Yu C; Huang L; Xu P; Kaiser P
    Mol Cell Proteomics; 2022 Jan; 21(1):100175. PubMed ID: 34763062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.
    Eddins MJ; Carlile CM; Gomez KM; Pickart CM; Wolberger C
    Nat Struct Mol Biol; 2006 Oct; 13(10):915-20. PubMed ID: 16980971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.