These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering. Kadletz PM; Motemani Y; Iannotta J; Salomon S; Khare C; Grossmann L; Maier HJ; Ludwig A; Schmahl WW ACS Comb Sci; 2018 Mar; 20(3):137-150. PubMed ID: 29356502 [TBL] [Abstract][Full Text] [Related]
3. Thermal stability and phase transformations of martensitic Ti-Nb alloys. Bönisch M; Calin M; Waitz T; Panigrahi A; Zehetbauer M; Gebert A; Skrotzki W; Eckert J Sci Technol Adv Mater; 2013 Oct; 14(5):055004. PubMed ID: 27877611 [TBL] [Abstract][Full Text] [Related]
4. The atomistic mechanism of hcp-to-bcc martensitic transformation in the Ti-Nb system revealed by molecular dynamics simulations. Li Y; Li J; Liu B Phys Chem Chem Phys; 2015 Feb; 17(6):4184-92. PubMed ID: 25566586 [TBL] [Abstract][Full Text] [Related]
5. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Li SJ; Cui TC; Hao YL; Yang R Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397 [TBL] [Abstract][Full Text] [Related]
6. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557 [TBL] [Abstract][Full Text] [Related]
7. Discriminating β, α and α″ phases in metastable β titanium alloys via segmentation: A combined electron backscattering diffraction and energy-dispersive X-ray spectroscopy approach. Niessen F; Gazder AA Ultramicroscopy; 2020 Apr; 211():112943. PubMed ID: 32062056 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys. Bönisch M; Calin M; van Humbeeck J; Skrotzki W; Eckert J Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():511-20. PubMed ID: 25579952 [TBL] [Abstract][Full Text] [Related]
9. Effects of thermal and deformation on martensitic transformation and magnetic properties in Fe-17%Mn-4.5%X (X=Co and Mo) alloys. Armağan O; Sarı U; Yücel Ç; Kırındı T Micron; 2017 Dec; 103():34-44. PubMed ID: 28946025 [TBL] [Abstract][Full Text] [Related]
10. Formation and Thermal Stability of the ω-Phase in Ti-Nb and Ti-Mo Alloys Subjected to HPT. Korneva A; Straumal B; Gornakova A; Kilmametov A; Gondek Ł; Lityńska-Dobrzyńska L; Chulist R; Pomorska M; Zięba P Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744194 [TBL] [Abstract][Full Text] [Related]
11. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants. Sallica-Leva E; Caram R; Jardini AL; Fogagnolo JB J Mech Behav Biomed Mater; 2016 Feb; 54():149-58. PubMed ID: 26458113 [TBL] [Abstract][Full Text] [Related]
12. Complexion-mediated martensitic phase transformation in Titanium. Zhang J; Tasan CC; Lai MJ; Dippel AC; Raabe D Nat Commun; 2017 Feb; 8():14210. PubMed ID: 28145484 [TBL] [Abstract][Full Text] [Related]
13. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy. Tahara M; Okano N; Inamura T; Hosoda H Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921 [TBL] [Abstract][Full Text] [Related]
14. Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study. Chakraborty T; Rogal J; Drautz R J Phys Condens Matter; 2015 Mar; 27(11):115401. PubMed ID: 25738922 [TBL] [Abstract][Full Text] [Related]
15. Crystal symmetry and the reversibility of martensitic transformations. Bhattacharya K; Conti S; Zanzotto G; Zimmer J Nature; 2004 Mar; 428(6978):55-9. PubMed ID: 14999277 [TBL] [Abstract][Full Text] [Related]
16. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. Stráský J; Harcuba P; Václavová K; Horváth K; Landa M; Srba O; Janeček M J Mech Behav Biomed Mater; 2017 Jul; 71():329-336. PubMed ID: 28399493 [TBL] [Abstract][Full Text] [Related]
17. Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Guan X; Liu D; Qu S; Cao G; Wang H; Feng A; Chen D Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124309 [TBL] [Abstract][Full Text] [Related]
18. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys. Yamanaka K; Mori M; Koizumi Y; Chiba A J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717 [TBL] [Abstract][Full Text] [Related]
19. Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys. Castany P; Yang Y; Bertrand E; Gloriant T Phys Rev Lett; 2016 Dec; 117(24):245501. PubMed ID: 28009177 [TBL] [Abstract][Full Text] [Related]
20. In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction. Kenel C; Grolimund D; Li X; Panepucci E; Samson VA; Sanchez DF; Marone F; Leinenbach C Sci Rep; 2017 Nov; 7(1):16358. PubMed ID: 29180780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]