These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29410439)

  • 1. Efficient communication dynamics on macro-connectome, and the propagation speed.
    Shimono M; Hatano N
    Sci Rep; 2018 Feb; 8(1):2510. PubMed ID: 29410439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems.
    Griffa A; Ricaud B; Benzi K; Bresson X; Daducci A; Vandergheynst P; Thiran JP; Hagmann P
    Neuroimage; 2017 Jul; 155():490-502. PubMed ID: 28412440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting-brain functional connectivity predicted by analytic measures of network communication.
    Goñi J; van den Heuvel MP; Avena-Koenigsberger A; Velez de Mendizabal N; Betzel RF; Griffa A; Hagmann P; Corominas-Murtra B; Thiran JP; Sporns O
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):833-8. PubMed ID: 24379387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.
    Hindriks R; Micheli C; Bosman CA; Oostenveld R; Lewis C; Mantini D; Fries P; Deco G
    Neuroimage; 2018 Nov; 181():347-358. PubMed ID: 29886144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation.
    Seguin C; Jedynak M; David O; Mansour S; Sporns O; Zalesky A
    Neuron; 2023 May; 111(9):1391-1401.e5. PubMed ID: 36889313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic network modeling and dimensionality reduction for human ECoG activity.
    Yang Y; Sani OG; Chang EF; Shanechi MM
    J Neural Eng; 2019 Aug; 16(5):056014. PubMed ID: 31096206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome.
    Avena-Koenigsberger A; Mišić B; Hawkins RX; Griffa A; Hagmann P; Goñi J; Sporns O
    Brain Struct Funct; 2017 Jan; 222(1):603-618. PubMed ID: 27334341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lesions on synchrony and metastability in cortical networks.
    Váša F; Shanahan M; Hellyer PJ; Scott G; Cabral J; Leech R
    Neuroimage; 2015 Sep; 118():456-67. PubMed ID: 26049146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling information flow along the human connectome using maximum flow.
    Lyoo Y; Kim JE; Yoon S
    Med Hypotheses; 2018 Jan; 110():155-160. PubMed ID: 29317061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest.
    Nakagawa TT; Woolrich M; Luckhoo H; Joensson M; Mohseni H; Kringelbach ML; Jirsa V; Deco G
    Neuroimage; 2014 Feb; 87():383-94. PubMed ID: 24246492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human connectome: origins and challenges.
    Sporns O
    Neuroimage; 2013 Oct; 80():53-61. PubMed ID: 23528922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectrum of routing strategies for brain networks.
    Avena-Koenigsberger A; Yan X; Kolchinsky A; van den Heuvel MP; Hagmann P; Sporns O
    PLoS Comput Biol; 2019 Mar; 15(3):e1006833. PubMed ID: 30849087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal mapping of the face connectome.
    Wang Y; Metoki A; Smith DV; Medaglia JD; Zang Y; Benear S; Popal H; Lin Y; Olson IR
    Nat Hum Behav; 2020 Apr; 4(4):397-411. PubMed ID: 31988441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of packetization on communication dynamics in brain networks.
    Fukushima M; Leibnitz K
    Netw Neurosci; 2024; 8(2):418-436. PubMed ID: 38952819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks.
    Kucyi A; Schrouff J; Bickel S; Foster BL; Shine JM; Parvizi J
    J Neurosci; 2018 Apr; 38(17):4230-4242. PubMed ID: 29626167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.