These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29410468)
1. Realization of a thermal cloak-concentrator using a metamaterial transformer. Liu DP; Chen PJ; Huang HH Sci Rep; 2018 Feb; 8(1):2493. PubMed ID: 29410468 [TBL] [Abstract][Full Text] [Related]
2. Local heating realization by reverse thermal cloak. Hu R; Wei X; Hu J; Luo X Sci Rep; 2014 Jan; 4():3600. PubMed ID: 24398592 [TBL] [Abstract][Full Text] [Related]
3. Realizing the multifunctional metamaterial for fluid flow in a porous medium. Chen M; Shen X; Chen Z; Lo JHY; Liu Y; Xu X; Wu Y; Xu L Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2207630119. PubMed ID: 36442131 [TBL] [Abstract][Full Text] [Related]
4. Robustly printable freeform thermal metamaterials. Sha W; Xiao M; Zhang J; Ren X; Zhu Z; Zhang Y; Xu G; Li H; Liu X; Chen X; Gao L; Qiu CW; Hu R Nat Commun; 2021 Dec; 12(1):7228. PubMed ID: 34893631 [TBL] [Abstract][Full Text] [Related]
5. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters. Park G; Kang S; Lee H; Choi W Sci Rep; 2017 Jan; 7():41000. PubMed ID: 28106156 [TBL] [Abstract][Full Text] [Related]
6. Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials. Chen F; Lei DY Sci Rep; 2015 Jun; 5():11552. PubMed ID: 26109080 [TBL] [Abstract][Full Text] [Related]
7. Thermal meta-device in analogue of zero-index photonics. Li Y; Zhu KJ; Peng YG; Li W; Yang T; Xu HX; Chen H; Zhu XF; Fan S; Qiu CW Nat Mater; 2019 Jan; 18(1):48-54. PubMed ID: 30510270 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Ghaedizadeh A; Shen J; Ren X; Xie YM Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787854 [TBL] [Abstract][Full Text] [Related]
9. Experimental demonstration of a bilayer thermal cloak. Han T; Bai X; Gao D; Thong JT; Li B; Qiu CW Phys Rev Lett; 2014 Feb; 112(5):054302. PubMed ID: 24580600 [TBL] [Abstract][Full Text] [Related]
10. Experimental Realization of an Extreme-Parameter Omnidirectional Cloak. Zheng B; Yang Y; Shao Z; Yan Q; Shen NH; Shen L; Wang H; Li E; Soukoulis CM; Chen H Research (Wash D C); 2019; 2019():8282641. PubMed ID: 31549087 [TBL] [Abstract][Full Text] [Related]
12. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Han T; Yuan T; Li B; Qiu CW Sci Rep; 2013; 3():1593. PubMed ID: 23549139 [TBL] [Abstract][Full Text] [Related]
13. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials. Han T; Bai X; Liu D; Gao D; Li B; Thong JTL; Qiu CW Sci Rep; 2015 May; 5():10242. PubMed ID: 25974383 [TBL] [Abstract][Full Text] [Related]
14. Thermal surface transformation and its applications to heat flux manipulations. Sun F; Liu Y; Yang Y; Chen Z; He S Opt Express; 2019 Nov; 27(23):33757-33767. PubMed ID: 31878437 [TBL] [Abstract][Full Text] [Related]
15. A metamaterial-free fluid-flow cloak. Tay F; Zhang Y; Xu H; Goh H; Luo Y; Zhang B Natl Sci Rev; 2022 Sep; 9(9):nwab205. PubMed ID: 36248071 [TBL] [Abstract][Full Text] [Related]
18. Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect. Liu B; Giddens H; Li Y; He Y; Wong SW; Hao Y Opt Express; 2020 Feb; 28(3):3745-3755. PubMed ID: 32122036 [TBL] [Abstract][Full Text] [Related]
19. Thermal Metamaterials with Configurable Mechanical Properties. Wang Y; Sha W; Xiao M; Gao L Adv Sci (Weinh); 2024 Oct; 11(40):e2406116. PubMed ID: 39225349 [TBL] [Abstract][Full Text] [Related]
20. Bicephalous transformed media: concentrator versus rotator and cloak versus superscatterer. Guenneau S; Petiteau D; Zerrad M; Amra C Opt Express; 2014 Sep; 22(19):23614-9. PubMed ID: 25321827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]