These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29411502)
1. Isolation and genomic characterization of Novimethylophilus kurashikiensis gen. nov. sp. nov., a new lanthanide-dependent methylotrophic species of Methylophilaceae. Lv H; Sahin N; Tani A Environ Microbiol; 2018 Mar; 20(3):1204-1223. PubMed ID: 29411502 [TBL] [Abstract][Full Text] [Related]
2. Lv H; Sahin N; Tani A Int J Syst Evol Microbiol; 2020 Apr; 70(4):2713-2718. PubMed ID: 32176600 [TBL] [Abstract][Full Text] [Related]
3. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Kalyuzhnaya MG; Bowerman S; Lara JC; Lidstrom ME; Chistoserdova L Int J Syst Evol Microbiol; 2006 Dec; 56(Pt 12):2819-2823. PubMed ID: 17158982 [TBL] [Abstract][Full Text] [Related]
4. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Kalyuzhnaya MG; Beck DAC; Vorobev A; Smalley N; Kunkel DD; Lidstrom ME; Chistoserdova L Int J Syst Evol Microbiol; 2012 Jan; 62(Pt 1):106-111. PubMed ID: 21335496 [TBL] [Abstract][Full Text] [Related]
5. Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Gogleva AA; Kaparullina EN; Doronina NV; Trotsenko YA Int J Syst Evol Microbiol; 2010 Nov; 60(Pt 11):2623-2628. PubMed ID: 20023062 [TBL] [Abstract][Full Text] [Related]
6. Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs. Tani A; Mitsui R; Nakagawa T Methods Enzymol; 2021; 650():1-18. PubMed ID: 33867018 [TBL] [Abstract][Full Text] [Related]
7. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Vorob'ev AV; de Boer W; Folman LB; Bodelier PL; Doronina NV; Suzina NE; Trotsenko YA; Dedysh SN Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2538-45. PubMed ID: 19622650 [TBL] [Abstract][Full Text] [Related]
8. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Chu F; Lidstrom ME J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104 [TBL] [Abstract][Full Text] [Related]
9. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
10. Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30 Lv H; Tani A J Biosci Bioeng; 2018 Dec; 126(6):667-675. PubMed ID: 29914801 [TBL] [Abstract][Full Text] [Related]
12. Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides. Kato S; Takashino M; Igarashi K; Kitagawa W Microbes Environ; 2020; 35(1):. PubMed ID: 32037377 [TBL] [Abstract][Full Text] [Related]
13. Lanthanide-Dependent Methylotrophs of the Family Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774 [TBL] [Abstract][Full Text] [Related]
14. Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Smalley NE; Taipale S; De Marco P; Doronina NV; Kyrpides N; Shapiro N; Woyke T; Kalyuzhnaya MG Int J Syst Evol Microbiol; 2015 Jul; 65(7):2227-2233. PubMed ID: 26231539 [TBL] [Abstract][Full Text] [Related]
15. Regulation of lanthanide-dependent methanol oxidation pathway in the legume symbiotic nitrogen-fixing bacterium Bradyrhizobium sp. strain Ce-3. Pastawan V; Suganuma S; Mizuno K; Wang L; Tani A; Mitsui R; Nakamura K; Shimada M; Hayakawa T; Fitriyanto NA; Nakagawa T J Biosci Bioeng; 2020 Dec; 130(6):582-587. PubMed ID: 32830039 [TBL] [Abstract][Full Text] [Related]
16. The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. Beck DA; McTaggart TL; Setboonsarng U; Vorobev A; Kalyuzhnaya MG; Ivanova N; Goodwin L; Woyke T; Lidstrom ME; Chistoserdova L PLoS One; 2014; 9(7):e102458. PubMed ID: 25058595 [TBL] [Abstract][Full Text] [Related]
17. Rhizobium rhizosphaerae sp. nov., a novel species isolated from rice rhizosphere. Zhao JJ; Zhang J; Zhang RJ; Zhang CW; Yin HQ; Zhang XX Antonie Van Leeuwenhoek; 2017 May; 110(5):651-656. PubMed ID: 28154946 [TBL] [Abstract][Full Text] [Related]
18. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere. Madhaiyan M; Poonguzhali S Antonie Van Leeuwenhoek; 2014 Feb; 105(2):367-76. PubMed ID: 24297603 [TBL] [Abstract][Full Text] [Related]
19. Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper. Madhaiyan M; Poonguzhali S; Senthilkumar M; Pragatheswari D; Lee KC; Lee JS Antonie Van Leeuwenhoek; 2013 Mar; 103(3):475-84. PubMed ID: 23111783 [TBL] [Abstract][Full Text] [Related]
20. Impact of plants on the diversity and activity of methylotrophs in soil. Macey MC; Pratscher J; Crombie AT; Murrell JC Microbiome; 2020 Mar; 8(1):31. PubMed ID: 32156318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]