These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29411830)

  • 1. Metal-ion responsive reversible assembly of DNA origami dimers: G-quadruplex induced intermolecular interaction.
    Yang S; Liu W; Nixon R; Wang R
    Nanoscale; 2018 Feb; 10(8):3626-3630. PubMed ID: 29411830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-selective formation of a guanine quadruplex on DNA origami structures.
    Olejko L; Cywinski PJ; Bald I
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):673-7. PubMed ID: 25413669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible reconfiguration of high-order DNA nanostructures by employing G-quartet toeholds as adhesive units.
    Chan MS; Leung HM; Wong SW; Lin Z; Gao Q; Chang TJH; Lai KWC; Lo PK
    Nanoscale; 2020 Jan; 12(4):2464-2471. PubMed ID: 31915778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ion-controlled four-color fluorescent telomeric switch on DNA origami structures.
    Olejko L; Cywiński PJ; Bald I
    Nanoscale; 2016 May; 8(19):10339-47. PubMed ID: 27138897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore.
    Hou X; Guo W; Xia F; Nie FQ; Dong H; Tian Y; Wen L; Wang L; Cao L; Yang Y; Xue J; Song Y; Wang Y; Liu D; Jiang L
    J Am Chem Soc; 2009 Jun; 131(22):7800-5. PubMed ID: 19435350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability.
    Largy E; Mergny JL; Gabelica V
    Met Ions Life Sci; 2016; 16():203-58. PubMed ID: 26860303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The collective behavior of spring-like motifs tethered to a DNA origami nanostructure.
    Schöneweiß EC; Saccà B
    Nanoscale; 2017 Mar; 9(13):4486-4496. PubMed ID: 28317958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids.
    Hardin CC; Perry AG; White K
    Biopolymers; 2000-2001; 56(3):147-94. PubMed ID: 11745110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of One- and Two-Dimensional Nanostructures by the Sequential Assembly of Quadruplex DNA Scaffolds.
    Cao Y; Kuang Y; Yang L; Ding P; Pei R
    Biomacromolecules; 2019 Jun; 20(6):2207-2217. PubMed ID: 31042021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable and dynamic G-quadruplexes and their applications.
    Dong J; O'Hagan MP; Willner I
    Chem Soc Rev; 2022 Aug; 51(17):7631-7661. PubMed ID: 35975685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure.
    Sannohe Y; Endo M; Katsuda Y; Hidaka K; Sugiyama H
    J Am Chem Soc; 2010 Nov; 132(46):16311-3. PubMed ID: 21028867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes.
    Guiset Miserachs H; Donghi D; Börner R; Johannsen S; Sigel RK
    J Biol Inorg Chem; 2016 Dec; 21(8):975-986. PubMed ID: 27704222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimerization rules for G-quadruplexes.
    Kolesnikova S; Hubálek M; Bednárová L; Cvacka J; Curtis EA
    Nucleic Acids Res; 2017 Sep; 45(15):8684-8696. PubMed ID: 28911118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the stepwise assembly-disassembly of DNA origami nanoclusters by pH stimuli-responsive DNA triplexes.
    Yang S; Liu W; Wang R
    Nanoscale; 2019 Oct; 11(39):18026-18030. PubMed ID: 31560004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reevaluation of the stability of G-quadruplex structures under crowding conditions.
    Zhou J; Tateishi-Karimata H; Mergny JL; Cheng M; Feng Z; Miyoshi D; Sugimoto N; Li C
    Biochimie; 2016 Feb; 121():204-8. PubMed ID: 26708323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids.
    Li X; Sánchez-Ferrer A; Bagnani M; Adamcik J; Azzari P; Hao J; Song A; Liu H; Mezzenga R
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9832-9839. PubMed ID: 32317383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-Responsive and Photocleavable Hydrogels from Noncanonical Amphiphilic DNA Nanostructures.
    Fabrini G; Minard A; Brady RA; Di Antonio M; Di Michele L
    Nano Lett; 2022 Jan; 22(2):602-611. PubMed ID: 35026112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated assembly of G-quadruplex structures by a small molecule.
    Han H; Cliff CL; Hurley LH
    Biochemistry; 1999 Jun; 38(22):6981-6. PubMed ID: 10353809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ions modulate the conformation and stability of a G-quadruplex with or without a small-molecule ligand.
    Lu H; Li S; Chen J; Xia J; Zhang J; Huang Y; Liu X; Wu HC; Zhao Y; Chai Z; Hu Y
    Metallomics; 2015 Nov; 7(11):1508-14. PubMed ID: 26381587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.