BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29411836)

  • 1. Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field.
    Cassone G; Sponer J; Sponer JE; Pietrucci F; Saitta AM; Saija F
    Chem Commun (Camb); 2018 Mar; 54(26):3211-3214. PubMed ID: 29411836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia.
    Weber AL
    Orig Life Evol Biosph; 1998 Jun; 28(3):259-70. PubMed ID: 9611766
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Cassone G; Sofia A; Sponer J; Saitta AM; Saija F
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,3-Dioxolane-4-ol Hemiacetal Stores Formaldehyde and Glycolaldehyde in the Gas-Phase.
    Eckhardt AK; Wende RC; Schreiner PR
    J Am Chem Soc; 2018 Oct; 140(39):12333-12336. PubMed ID: 30187747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prebiotic Synthesis of Glycolaldehyde and Glyceraldehyde from Formaldehyde: A Computational Study on the Initial Steps of the Formose Reaction.
    Venturini A; González J
    Chempluschem; 2024 Mar; 89(3):e202300388. PubMed ID: 37932034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic Sugar Formation Under Nonaqueous Conditions and Mechanochemical Acceleration.
    Lamour S; Pallmann S; Haas M; Trapp O
    Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31226799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation of deprotonated glycolaldehyde in the gas phase and relevance to the formose reaction.
    Sekiguchi O; Uggerud E
    J Phys Chem A; 2013 Nov; 117(44):11293-6. PubMed ID: 24102334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharide formation by sustainable formose reaction using heterogeneous zeolite catalysts.
    Waki M; Shirai S; Hase Y
    Dalton Trans; 2024 Feb; 53(6):2678-2686. PubMed ID: 38226527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol.
    Cassone G; Pietrucci F; Saija F; Guyot F; Saitta AM
    Chem Sci; 2017 Mar; 8(3):2329-2336. PubMed ID: 28451337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction.
    Thripati S; Ramabhadran RO
    J Phys Chem A; 2017 Nov; 121(45):8659-8674. PubMed ID: 29058895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.
    Ruckenstein E; Shulgin IL; Tilson JL
    J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocatalysis in Formose Reaction and Formation of RNA Nucleosides.
    Jeilani YA; Nguyen MT
    J Phys Chem B; 2020 Dec; 124(50):11324-11336. PubMed ID: 33269920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Di(oxymethylene)glycol in the Raman Spectrum of Formaldehyde Aqueous Solutions by ab Initio Molecular Dynamics Simulations and Quantum Chemistry Calculations.
    Delcroix P; Pagliai M; Cardini G; Bégué D; Hanoune B
    J Phys Chem A; 2015 Sep; 119(38):9785-93. PubMed ID: 26352865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics study of dissociation of water under an electric field.
    Saitta AM; Saija F; Giaquinta PV
    Phys Rev Lett; 2012 May; 108(20):207801. PubMed ID: 23003187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data.
    Kua J; Galloway MM; Millage KD; Avila JE; De Haan DO
    J Phys Chem A; 2013 Apr; 117(14):2997-3008. PubMed ID: 23477589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting.
    Haas M; Lamour S; Christ SB; Trapp O
    Commun Chem; 2020 Oct; 3(1):140. PubMed ID: 36703456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miller experiments in atomistic computer simulations.
    Saitta AM; Saija F
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13768-73. PubMed ID: 25201948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer.
    Eckhardt AK; Linden MM; Wende RC; Bernhardt B; Schreiner PR
    Nat Chem; 2018 Nov; 10(11):1141-1147. PubMed ID: 30202100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts.
    Cassone G; Creazzo F; Giaquinta PV; Sponer J; Saija F
    Phys Chem Chem Phys; 2017 Aug; 19(31):20420-20429. PubMed ID: 28737810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar synthesis from a gas-phase formose reaction.
    Jalbout AF; Abrell L; Adamowicz L; Polt R; Apponi AJ; Ziurys LM
    Astrobiology; 2007 Jun; 7(3):433-42. PubMed ID: 17630839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.