These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29411942)

  • 1. Laser-induced breakdown spectroscopy-Raman: An effective complementary approach to analyze renal-calculi.
    Muhammed Shameem KM; Chawla A; Mallya M; Barik BK; Unnikrishnan VK; Kartha VB; Santhosh C
    J Biophotonics; 2018 Jun; 11(6):e201700271. PubMed ID: 29411942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and classification of heterogeneous kidney stones using laser-induced breakdown spectroscopy (LIBS).
    Oztoprak BG; Gonzalez J; Yoo J; Gulecen T; Mutlu N; Russo RE; Gundogdu O; Demir A
    Appl Spectrosc; 2012 Nov; 66(11):1353-61. PubMed ID: 23146192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to Fourier Transform Infrared spectroscopy.
    Castiglione V; Sacré PY; Cavalier E; Hubert P; Gadisseur R; Ziemons E
    PLoS One; 2018; 13(8):e0201460. PubMed ID: 30075002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Particles in Parenteral Drug Raw Materials.
    Lee K; Lankers M; Valet O
    PDA J Pharm Sci Technol; 2018; 72(6):599-607. PubMed ID: 29669816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances.
    Wiens RC; Sharma SK; Thompson J; Misra A; Lucey PG
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2324-34. PubMed ID: 16029853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust.
    Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonate in struvite stone detected in Raman spectra compared with infrared spectra and X-ray diffraction.
    Takasaki E
    Int J Urol; 1996 Jan; 3(1):27-30. PubMed ID: 8646595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echelle LIBS-Raman system: A versatile tool for mineralogical and archaeological applications.
    Muhammed Shameem KM; Dhanada VS; Harikrishnan S; George SD; Kartha VB; Santhosh C; Unnikrishnan VK
    Talanta; 2020 Feb; 208():120482. PubMed ID: 31816773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Functional evaluation in patients with kidney calculi].
    Stojimirović B
    Srp Arh Celok Lek; 1998; 126(9-10):394-8. PubMed ID: 9863414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
    Lednev VN; Pershin SM; Sdvizhenskii PA; Grishin MY; Fedorov AN; Bukin VV; Oshurko VB; Shchegolikhin AN
    Anal Bioanal Chem; 2018 Jan; 410(1):277-286. PubMed ID: 29119255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.
    Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy.
    Singh VK; Rai AK; Rai PK; Jindal PK
    Lasers Med Sci; 2009 Sep; 24(5):749-59. PubMed ID: 19104906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The composition and quantitative analysis of urinary calculi in patients with renal calculi.
    Jawalekar S; Surve VT; Bhutey AK
    Nepal Med Coll J; 2010 Sep; 12(3):145-8. PubMed ID: 21446361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.
    Choi S; Kim D; Yang J; Yoh JJ
    Appl Spectrosc; 2017 Apr; 71(4):678-685. PubMed ID: 28195495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy.
    Khalil AA; Gondal MA; Shemis M; Khan IS
    Appl Opt; 2015 Mar; 54(8):2123-31. PubMed ID: 25968393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Particles in Raw Materials.
    Lee K; Lankers M; Valet O
    AAPS PharmSciTech; 2018 Jan; 19(1):184-191. PubMed ID: 28646246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urolithiasis analysis in a multiethnic population at a tertiary hospital in Nairobi, Kenya.
    Wathigo FK; Hayombe A; Maina D
    BMC Res Notes; 2017 Apr; 10(1):158. PubMed ID: 28427449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive value of kidney stone composition in the detection of metabolic abnormalities.
    Pak CY; Poindexter JR; Adams-Huet B; Pearle MS
    Am J Med; 2003 Jul; 115(1):26-32. PubMed ID: 12867231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.
    Tonannavar J; Deshpande G; Yenagi J; Patil SB; Patil NA; Mulimani BG
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 154():20-26. PubMed ID: 26495905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The composition of renal stones analysed by infrared spectroscopy.
    Modlin M; Davies PJ
    S Afr Med J; 1981 Mar; 59(10):337-41. PubMed ID: 7466488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.