BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29412086)

  • 1. An Ultralightweight and Living Legged Robot.
    Vo Doan TT; Tan MYW; Bui XH; Sato H
    Soft Robot; 2018 Feb; 5(1):17-23. PubMed ID: 29412086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.
    Cao F; Zhang C; Choo HY; Sato H
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27030043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 5. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnidirectional Jump Control of a Locust-Computer Hybrid Robot.
    Liu P; Ma S; Liu S; Li Y; Li B
    Soft Robot; 2023 Feb; 10(1):40-51. PubMed ID: 35333662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robotic leg inspired from an insect leg.
    Tran-Ngoc PT; Lim LZ; Gan JH; Wang H; Vo-Doan TT; Sato H
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35700723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving a Behavioral Repertoire for a Walking Robot.
    Cully A; Mouret JB
    Evol Comput; 2016; 24(1):59-88. PubMed ID: 25585055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro.
    De Luca A; Muratore L; Raghavan VS; Antonucci D; Tsagarakis NG
    Front Robot AI; 2021; 8():721001. PubMed ID: 34869611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments.
    Wang R; Xiao H; Quan X; Gao J; Fukuda T; Shi Q
    Soft Robot; 2024 Feb; 11(1):70-84. PubMed ID: 37477672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
    Bartlett NW; Tolley MT; Overvelde JT; Weaver JC; Mosadegh B; Bertoldi K; Whitesides GM; Wood RJ
    Science; 2015 Jul; 349(6244):161-5. PubMed ID: 26160940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexoskeleton Printing Enables Versatile Fabrication of Hybrid Soft and Rigid Robots.
    Jiang M; Zhou Z; Gravish N
    Soft Robot; 2020 Dec; 7(6):770-778. PubMed ID: 32255734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion Control With Frequency and Motor Pattern Adaptations.
    Thor M; Strohmer B; Manoonpong P
    Front Neural Circuits; 2021; 15():743888. PubMed ID: 34899196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Design of a Polymer-Bilayer-Based Mechanically Compliant Worm-Like Robot.
    Muff LF; Mills AS; Riddle S; Buclin V; Roulin A; Chiel HJ; Quinn RD; Weder C; Daltorio KA
    Adv Mater; 2023 May; 35(18):e2210409. PubMed ID: 36807655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Research of All-Terrain Wheel-Legged Robot.
    Zhao J; Han T; Wang S; Liu C; Fang J; Liu S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of bio-inspired compliant legged robot designs.
    Zhou X; Bi S
    Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.