These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29412118)

  • 1. Antibody Administration for Bone Tissue Engineering: A Systematic Review.
    Hosseinpour S; Rad MR; Khojasteh A; Zadeh HH
    Curr Stem Cell Res Ther; 2018; 13(4):292-315. PubMed ID: 29412118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies.
    Freire MO; You HK; Kook JK; Choi JH; Zadeh HH
    Tissue Eng Part A; 2011 Dec; 17(23-24):2911-8. PubMed ID: 21870943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffolds for the repair of bone defects in clinical studies: a systematic review.
    Zeng JH; Liu SW; Xiong L; Qiu P; Ding LH; Xiong SL; Li JT; Liao XG; Tang ZM
    J Orthop Surg Res; 2018 Feb; 13(1):33. PubMed ID: 29433544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of selected scaffolds for bone tissue engineering: a systematic review.
    Hosseinpour S; Ghazizadeh Ahsaie M; Rezai Rad M; Baghani MT; Motamedian SR; Khojasteh A
    Oral Maxillofac Surg; 2017 Jun; 21(2):109-129. PubMed ID: 28194530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair.
    Maillard S; Sicard L; Andrique C; Torrens C; Lesieur J; Baroukh B; Coradin T; Poliard A; Slimani L; Chaussain C
    Acta Biomater; 2022 Mar; 140():178-189. PubMed ID: 34875361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodontal regeneration - intrabony defects: a systematic review from the AAP Regeneration Workshop.
    Kao RT; Nares S; Reynolds MA
    J Periodontol; 2015 Feb; 86(2 Suppl):S77-104. PubMed ID: 25216204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Bone Tissue with Naturally-Derived Small Molecules.
    Awale G; Wong E; Rajpura K; W-H Lo K
    Curr Pharm Des; 2017; 23(24):3585-3594. PubMed ID: 28521690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long bone defect models for tissue engineering applications: criteria for choice.
    Horner EA; Kirkham J; Wood D; Curran S; Smith M; Thomson B; Yang XB
    Tissue Eng Part B Rev; 2010 Apr; 16(2):263-71. PubMed ID: 19925211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the orientation of anti-BMP2 monoclonal antibody immobilized on scaffold in antibody-mediated osseous regeneration.
    Ansari S; Freire M; Choi MG; Tavari A; Almohaimeed M; Moshaverinia A; Zadeh HH
    J Biomater Appl; 2015 Nov; 30(5):558-67. PubMed ID: 26184354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies.
    Shanbhag S; Pandis N; Mustafa K; Nyengaard JR; Stavropoulos A
    Tissue Eng Part B Rev; 2017 Apr; 23(2):101-117. PubMed ID: 27733094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects.
    Khojasteh A; Hosseinpour S; Dehghan MM; Mashhadiabbas F; Rezai Rad M; Ansari S; Farzad Mohajeri S; Zadeh HH
    Biomed Res Int; 2018; 2018():9508721. PubMed ID: 29682573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT
    Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review.
    Wan Z; Zhang P; Lv L; Zhou Y
    Theranostics; 2020; 10(25):11837-11861. PubMed ID: 33052249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential impact of bone tissue engineering in the clinic.
    Mishra R; Bishop T; Valerio IL; Fisher JP; Dean D
    Regen Med; 2016 Sep; 11(6):571-87. PubMed ID: 27549369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of fluorochrome labels in in vivo bone tissue engineering research.
    van Gaalen SM; Kruyt MC; Geuze RE; de Bruijn JD; Alblas J; Dhert WJ
    Tissue Eng Part B Rev; 2010 Apr; 16(2):209-17. PubMed ID: 19857045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Icariin: does it have an osteoinductive potential for bone tissue engineering?
    Zhang X; Liu T; Huang Y; Wismeijer D; Liu Y
    Phytother Res; 2014 Apr; 28(4):498-509. PubMed ID: 23824956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration.
    Feng L; Milner DJ; Xia C; Nye HL; Redwood P; Cameron JA; Stocum DL; Fang N; Jasiuk I
    Tissue Eng Part A; 2011 Mar; 17(5-6):691-701. PubMed ID: 20929280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.
    de Misquita MR; Bentini R; Goncalves F
    J Biomater Appl; 2016 Nov; 31(5):625-636. PubMed ID: 27334129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.