These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29412466)
1. Giant reed genotypes from temperate and arid environments show different response mechanisms to drought. Zegada-Lizarazu W; Della Rocca G; Centritto M; Parenti A; Monti A Physiol Plant; 2018 Aug; 163(4):490-501. PubMed ID: 29412466 [TBL] [Abstract][Full Text] [Related]
2. Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed. Zegada-Lizarazu W; Monti A Ann Bot; 2019 Oct; 124(4):605-616. PubMed ID: 30698652 [TBL] [Abstract][Full Text] [Related]
3. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Vadez V; Rao JS; Bhatnagar-Mathur P; Sharma KK Plant Biol (Stuttg); 2013 Jan; 15(1):45-52. PubMed ID: 22672619 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses. Couso LL; Fernández RJ Ann Bot; 2012 Sep; 110(4):849-57. PubMed ID: 22782237 [TBL] [Abstract][Full Text] [Related]
5. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata. Dong T; Duan B; Zhang S; Korpelainen H; Niinemets Ü; Li C Tree Physiol; 2016 Jul; 36(7):807-17. PubMed ID: 27122365 [TBL] [Abstract][Full Text] [Related]
7. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against Mårtensson LM; Carlsson G; Prade T; Kørup K; Lærke PE; Jensen ES Plant Physiol Biochem; 2017 Apr; 113():1-5. PubMed ID: 28152389 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. Ahrar M; Doneva D; Tattini M; Brunetti C; Gori A; Rodeghiero M; Wohlfahrt G; Biasioli F; Varotto C; Loreto F; Velikova V J Exp Bot; 2017 Apr; 68(9):2439-2451. PubMed ID: 28449129 [TBL] [Abstract][Full Text] [Related]
9. Reduced root cortical cell file number improves drought tolerance in maize. Chimungu JG; Brown KM; Lynch JP Plant Physiol; 2014 Dec; 166(4):1943-55. PubMed ID: 25355868 [TBL] [Abstract][Full Text] [Related]
10. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition]. Liu YF; Chen SL; Li Ying-chun ; Guo ZW; Li YC; Yang QP Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3641-8. PubMed ID: 27112000 [TBL] [Abstract][Full Text] [Related]
11. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. Balachowski JA; Bristiel PM; Volaire FA Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898 [TBL] [Abstract][Full Text] [Related]
12. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes. Elazab A; Serret MD; Araus JL Planta; 2016 Jul; 244(1):125-44. PubMed ID: 26992389 [TBL] [Abstract][Full Text] [Related]
13. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Zaman-Allah M; Jenkinson DM; Vadez V J Exp Bot; 2011 Aug; 62(12):4239-52. PubMed ID: 21610017 [TBL] [Abstract][Full Text] [Related]
14. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms. Allinson G Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112 [TBL] [Abstract][Full Text] [Related]
15. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Haworth M; Marino G; Riggi E; Avola G; Brunetti C; Scordia D; Testa G; Thiago Gaudio Gomes M; Loreto F; Luciano Cosentino S; Centritto M Ann Bot; 2019 Oct; 124(4):567-580. PubMed ID: 30566593 [TBL] [Abstract][Full Text] [Related]
16. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Riaz M; Farooq J; Sakhawat G; Mahmood A; Sadiq MA; Yaseen M Genet Mol Res; 2013 Feb; 12(1):552-61. PubMed ID: 23512672 [TBL] [Abstract][Full Text] [Related]
17. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Knutzen F; Meier IC; Leuschner C Tree Physiol; 2015 Sep; 35(9):949-63. PubMed ID: 26209617 [TBL] [Abstract][Full Text] [Related]
18. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species? Larchevêque M; Maurel M; Desrochers A; Larocque GR Tree Physiol; 2011 Mar; 31(3):240-9. PubMed ID: 21444373 [TBL] [Abstract][Full Text] [Related]
19. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Belko N; Zaman-Allah M; Diop NN; Cisse N; Zombre G; Ehlers JD; Vadez V Plant Biol (Stuttg); 2013 Mar; 15(2):304-16. PubMed ID: 22823007 [TBL] [Abstract][Full Text] [Related]
20. Natural Genotypic Variation Underpins Root System Response to Drought Stress in Bambara Groundnut [ Mateva KI; Chai HH; Mayes S; Massawe F Front Plant Sci; 2022; 13():760879. PubMed ID: 35419010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]