These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29412639)

  • 41. Development of super dimensional stable poplar structure with fire and mildew resistance by delignification/densification of wood with highly aligned cellulose molecules.
    Kuai B; Xu Q; Zhan T; Lv J; Cai L; Gong M; Zhang Y
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128572. PubMed ID: 38052291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review on Grafting of Biofibers for Biocomposites.
    Wei L; McDonald AG
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials.
    Khakalo A; Tanaka A; Korpela A; Orelma H
    ACS Appl Mater Interfaces; 2020 May; 12(20):23532-23542. PubMed ID: 32337962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.
    Zhou W; Li S; Liu Y; Xu Z; Wei S; Wang G; Lian J; Jiang Q
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9841-9848. PubMed ID: 29493207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose.
    Yang X; Berthold F; Berglund LA
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10310-10319. PubMed ID: 30762342
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.
    Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L
    Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile Oil Removal from Water-in-Oil Stable Emulsions Using PU Foams.
    Barroso-Solares S; Pinto J; Fragouli D; Athanassiou A
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment.
    Chen F; Gong AS; Zhu M; Chen G; Lacey SD; Jiang F; Li Y; Wang Y; Dai J; Yao Y; Song J; Liu B; Fu K; Das S; Hu L
    ACS Nano; 2017 Apr; 11(4):4275-4282. PubMed ID: 28362487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small Angle Neutron Scattering Shows Nanoscale PMMA Distribution in Transparent Wood Biocomposites.
    Chen P; Li Y; Nishiyama Y; Pingali SV; O'Neill HM; Zhang Q; Berglund LA
    Nano Lett; 2021 Apr; 21(7):2883-2890. PubMed ID: 33734720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.
    Wu MN; Maity JP; Bundschuh J; Li CF; Lee CR; Hsu CM; Lee WC; Huang CH; Chen CY
    Water Res; 2017 Oct; 123():332-344. PubMed ID: 28683374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification.
    Chen F; Ritter M; Xu Y; Tu K; Koch SM; Yan W; Bian H; Ding Y; Sun J; Burgert I
    Small; 2024 May; ():e2311966. PubMed ID: 38770995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesoporosity of Delignified Wood Investigated by Water Vapor Sorption.
    Grönquist P; Frey M; Keplinger T; Burgert I
    ACS Omega; 2019 Jul; 4(7):12425-12431. PubMed ID: 31460361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. H
    Zhang J; Ying Y; Yi X; Han W; Yin L; Zheng Y; Zheng R
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall.
    Jonasson S; Bünder A; Berglund L; Hertzberg M; Niittylä T; Oksman K
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33947163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bio-based composites fabricated from wood fibers through self-bonding technology.
    Ye H; Wang Y; Yu Q; Ge S; Fan W; Zhang M; Huang Z; Manzo M; Cai L; Wang L; Xia C
    Chemosphere; 2022 Jan; 287(Pt 4):132436. PubMed ID: 34610375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation.
    Mittag A; Rahman MM; Hafez I; Tajvidi M
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intercellular Matrix Infiltration Improves the Wet Strength of Delignified Wood Composites.
    Koch SM; Pillon M; Keplinger T; Dreimol CH; Weinkötz S; Burgert I
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31216-31224. PubMed ID: 35767702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of a Translucent Material Produced from
    Park KC; Kim B; Park H; Kim Y; Park SY
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297956
    [No Abstract]   [Full Text] [Related]  

  • 60. Preparation and properties of pH-responsive reversible-wettability biomass cellulose-based material for controllable oil/water separation.
    Cheng M; He H; Zhu H; Guo W; Chen W; Xue F; Zhou S; Chen X; Wang S
    Carbohydr Polym; 2019 Jan; 203():246-255. PubMed ID: 30318210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.