BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29412997)

  • 21. Automated docking for novel drug discovery.
    Bello M; Martínez-Archundia M; Correa-Basurto J
    Expert Opin Drug Discov; 2013 Jul; 8(7):821-34. PubMed ID: 23642085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational prediction of protein hot spot residues.
    Morrow JK; Zhang S
    Curr Pharm Des; 2012; 18(9):1255-65. PubMed ID: 22316154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Docking and scoring: applications to drug discovery in the interactomics era.
    Grosdidier S; Fernández-Recio J
    Expert Opin Drug Discov; 2009 Jun; 4(6):673-86. PubMed ID: 23489159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the frontiers of protein-protein modeling: from docking and scoring to binding affinity predictions and other challenges.
    Pallara C; Jiménez-García B; Pérez-Cano L; Romero-Durana M; Solernou A; Grosdidier S; Pons C; Moal IH; Fernandez-Recio J
    Proteins; 2013 Dec; 81(12):2192-200. PubMed ID: 23934865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Search strategies and evaluation in protein-protein docking: principles, advances and challenges.
    Huang SY
    Drug Discov Today; 2014 Aug; 19(8):1081-96. PubMed ID: 24594385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational prediction of protein interfaces: A review of data driven methods.
    Xue LC; Dobbs D; Bonvin AM; Honavar V
    FEBS Lett; 2015 Nov; 589(23):3516-26. PubMed ID: 26460190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From structure to function: methods and applications.
    Wolfson HJ; Shatsky M; Schneidman-Duhovny D; Dror O; Shulman-Peleg A; Ma B; Nussinov R
    Curr Protein Pept Sci; 2005 Apr; 6(2):171-83. PubMed ID: 15853653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring.
    Gong X; Wang P; Yang F; Chang S; Liu B; He H; Cao L; Xu X; Li C; Chen W; Wang C
    Proteins; 2010 Nov; 78(15):3150-5. PubMed ID: 20806233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Docking-based identification of small-molecule binding sites at protein-protein interfaces.
    Rosell M; Fernández-Recio J
    Comput Struct Biotechnol J; 2020; 18():3750-3761. PubMed ID: 33250973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Present and future challenges and limitations in protein-protein docking.
    Pons C; Grosdidier S; Solernou A; Pérez-Cano L; Fernández-Recio J
    Proteins; 2010 Jan; 78(1):95-108. PubMed ID: 19731373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational drug design targeting protein-protein interactions.
    Bienstock RJ
    Curr Pharm Des; 2012; 18(9):1240-54. PubMed ID: 22316151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of protein-binding areas by small-world residue networks and application to docking.
    Pons C; Glaser F; Fernandez-Recio J
    BMC Bioinformatics; 2011 Sep; 12():378. PubMed ID: 21943333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pyDockSAXS: protein-protein complex structure by SAXS and computational docking.
    Jiménez-García B; Pons C; Svergun DI; Bernadó P; Fernández-Recio J
    Nucleic Acids Res; 2015 Jul; 43(W1):W356-61. PubMed ID: 25897115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the importance of Delaunay-based definition of atomic interactions in scoring of protein-protein docking results.
    Jafari R; Sadeghi M; Mirzaie M
    J Mol Graph Model; 2016 May; 66():108-14. PubMed ID: 27060891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.