These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 29413178)

  • 1. Regulatory Effects of NAD
    Zhang N; Sauve AA
    Prog Mol Biol Transl Sci; 2018; 154():71-104. PubMed ID: 29413178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Sirtuins and Molecular Mechanisms of Aging.
    van de Ven RAH; Santos D; Haigis MC
    Trends Mol Med; 2017 Apr; 23(4):320-331. PubMed ID: 28285806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD and ADP-ribose metabolism in mitochondria.
    Dölle C; Rack JG; Ziegler M
    FEBS J; 2013 Aug; 280(15):3530-41. PubMed ID: 23617329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD+ and sirtuins in aging and disease.
    Imai S; Guarente L
    Trends Cell Biol; 2014 Aug; 24(8):464-71. PubMed ID: 24786309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target.
    Griffiths HBS; Williams C; King SJ; Allison SJ
    Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD⁺ metabolism: a therapeutic target for age-related metabolic disease.
    Mouchiroud L; Houtkooper RH; Auwerx J
    Crit Rev Biochem Mol Biol; 2013; 48(4):397-408. PubMed ID: 23742622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes.
    Braidy N; Berg J; Clement J; Khorshidi F; Poljak A; Jayasena T; Grant R; Sachdev P
    Antioxid Redox Signal; 2019 Jan; 30(2):251-294. PubMed ID: 29634344
    [No Abstract]   [Full Text] [Related]  

  • 10. NAD and the aging process: Role in life, death and everything in between.
    Chini CCS; Tarragó MG; Chini EN
    Mol Cell Endocrinol; 2017 Nov; 455():62-74. PubMed ID: 27825999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
    Kato M; Lin SJ
    DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
    Belenky P; Racette FG; Bogan KL; McClure JM; Smith JS; Brenner C
    Cell; 2007 May; 129(3):473-84. PubMed ID: 17482543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD Precursors, Mitochondria Targeting Compounds and ADP-Ribosylation Inhibitors in Treatment of Inflammatory Diseases and Cancer.
    Poltronieri P; Mezzolla V; Farooqi AA; Di Girolamo M
    Curr Med Chem; 2021; 28(41):8453-8479. PubMed ID: 33461448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Regulatory Role of NAD in Human and Animal Cells.
    Kulikova VA; Gromyko DV; Nikiforov AA
    Biochemistry (Mosc); 2018 Jul; 83(7):800-812. PubMed ID: 30200865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy.
    Yang Y; Sauve AA
    Biochim Biophys Acta; 2016 Dec; 1864(12):1787-1800. PubMed ID: 27374990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD
    Covarrubias AJ; Perrone R; Grozio A; Verdin E
    Nat Rev Mol Cell Biol; 2021 Feb; 22(2):119-141. PubMed ID: 33353981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?
    Zhang J
    Bioessays; 2003 Aug; 25(8):808-14. PubMed ID: 12879452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule.
    Elhassan YS; Philp AA; Lavery GG
    J Endocr Soc; 2017 Jul; 1(7):816-835. PubMed ID: 29264533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.