These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29413520)

  • 1. RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells.
    Jaffrey SR
    Adv Pharmacol; 2018; 82():187-203. PubMed ID: 29413520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells.
    Litke JL; You M; Jaffrey SR
    Methods Enzymol; 2016; 572():315-33. PubMed ID: 27241761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch.
    You M; Litke JL; Jaffrey SR
    Proc Natl Acad Sci U S A; 2015 May; 112(21):E2756-65. PubMed ID: 25964329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Intracellular
    Li X; Mo L; Litke JL; Dey SK; Suter SR; Jaffrey SR
    J Am Chem Soc; 2020 Aug; 142(33):14117-14124. PubMed ID: 32698574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2015; 1316():87-103. PubMed ID: 25967055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Manna S; Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2021; 2323():121-140. PubMed ID: 34086278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New approaches for sensing metabolites and proteins in live cells using RNA.
    Strack RL; Jaffrey SR
    Curr Opin Chem Biol; 2013 Aug; 17(4):651-5. PubMed ID: 23746618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors.
    Fang M; Li H; Xie X; Wang H; Jiang Y; Li T; Zhang B; Jiang X; Cao Y; Zhang R; Zhang D; Zhao Y; Zhu L; Chen X; Yang Y
    Biosens Bioelectron; 2023 Sep; 235():115411. PubMed ID: 37236014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetically encoded fluorescent biosensor for detecting nitroreductase activity in living cancer cells.
    Xu F; Fan M; Kang S; Duan X
    Anal Chim Acta; 2019 Dec; 1088():131-136. PubMed ID: 31623708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Assessment of Intracellular Metabolites in Single Cells through RNA-Based Sensors.
    Ortega AD
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically-encoded FRET-based sensors for monitoring Zn(2+) in living cells.
    Hessels AM; Merkx M
    Metallomics; 2015 Feb; 7(2):258-66. PubMed ID: 25156481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.
    You M; Litke JL; Wu R; Jaffrey SR
    Cell Chem Biol; 2019 Apr; 26(4):471-481.e3. PubMed ID: 30773480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag.
    Dey SK; Filonov GS; Olarerin-George AO; Jackson BT; Finley LWS; Jaffrey SR
    Nat Chem Biol; 2022 Feb; 18(2):180-190. PubMed ID: 34937909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fluorogenic RNA-Based Sensor Activated by Metabolite-Induced RNA Dimerization.
    Kim H; Jaffrey SR
    Cell Chem Biol; 2019 Dec; 26(12):1725-1731.e6. PubMed ID: 31631009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors.
    Okumoto S
    Curr Opin Biotechnol; 2010 Feb; 21(1):45-54. PubMed ID: 20167470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer.
    Chen Z; Chen W; Reheman Z; Jiang H; Wu J; Li X
    Nucleic Acids Res; 2023 Sep; 51(16):8322-8336. PubMed ID: 37486780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering and characterization of fluorogenic glycine riboswitches.
    Ketterer S; Gladis L; Kozica A; Meier M
    Nucleic Acids Res; 2016 Jul; 44(12):5983-92. PubMed ID: 27220466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.