BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 29413625)

  • 1. Formation and elasticity of membranes of the class II hydrophobin Cerato-ulmin at oil-water interfaces.
    Zhang X; Kirby SM; Chen Y; Anna SL; Walker LM; Hung FR; Russo PS
    Colloids Surf B Biointerfaces; 2018 Apr; 164():98-106. PubMed ID: 29413625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a Rigid Hydrophobin Film and Disruption by an Anionic Surfactant at an Air/Water Interface.
    Kirby SM; Zhang X; Russo PS; Anna SL; Walker LM
    Langmuir; 2016 Jun; 32(22):5542-51. PubMed ID: 27164189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric Field Deformation of Protein-Coated Droplets in Thin Channels.
    Randall GC
    Langmuir; 2018 Aug; 34(34):10028-10039. PubMed ID: 30060664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbubbles and Oil Droplets Stabilized by a Class II Hydrophobin in Marinelike Environments.
    Zhang X; Blalock B; Huberty W; Chen Y; Hung F; Russo PS
    Langmuir; 2019 Mar; 35(12):4380-4386. PubMed ID: 30873841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces.
    Richter MJ; Schulz A; Subkowski T; Böker A
    J Colloid Interface Sci; 2016 Oct; 479():199-206. PubMed ID: 27388134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of hydrophobin adsorption at an oil-water interface.
    Cheung DL
    Langmuir; 2012 Jun; 28(23):8730-6. PubMed ID: 22591377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei.
    Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA
    Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface.
    Pradines V; Krägel J; Fainerman VB; Miller R
    J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Submicron Bubbles Formed by the Hydrophobin Cerato-ulmin.
    Gorman A; Zhang X; Risteen B; Tassone CJ; Russo PS
    J Phys Chem B; 2019 May; 123(18):3955-3961. PubMed ID: 31033290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.
    Pérez-Mosqueda LM; Maldonado-Valderrama J; Ramírez P; Cabrerizo-Vílchez MA; Muñoz J
    Colloids Surf B Biointerfaces; 2013 Nov; 111():171-8. PubMed ID: 23807126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging.
    Stanimirova RD; Gurkov TD; Kralchevsky PA; Balashev KT; Stoyanov SD; Pelan EG
    Langmuir; 2013 May; 29(20):6053-67. PubMed ID: 23611592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions.
    Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB
    Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties.
    Wang X; Shi F; Wösten HA; Hektor H; Poolman B; Robillard GT
    Biophys J; 2005 May; 88(5):3434-43. PubMed ID: 15749774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.
    Danov KD; Kralchevsky PA; Radulova GM; Basheva ES; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2015 Aug; 222():148-61. PubMed ID: 24828304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.
    Alexandrov NA; Marinova KG; Gurkov TD; Danov KD; Kralchevsky PA; Stoyanov SD; Blijdenstein TB; Arnaudov LN; Pelan EG; Lips A
    J Colloid Interface Sci; 2012 Jun; 376(1):296-306. PubMed ID: 22480400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.
    Krivosheeva O; Dėdinaitė A; Linder MB; Tilton RD; Claesson PM
    Langmuir; 2013 Feb; 29(8):2683-91. PubMed ID: 23356719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.
    de Vocht ML; Scholtmeijer K; van der Vegte EW; de Vries OM; Sonveaux N; Wösten HA; Ruysschaert JM; Hadziloannou G; Wessels JG; Robillard GT
    Biophys J; 1998 Apr; 74(4):2059-68. PubMed ID: 9545064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.