These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29413811)
1. 3D QSAR Pharmacophore Based Virtual Screening for Identification of Potential Inhibitors for CDC25B. Ma Y; Li HL; Chen XB; Jin WY; Zhou H; Ma Y; Wang RL Comput Biol Chem; 2018 Apr; 73():1-12. PubMed ID: 29413811 [TBL] [Abstract][Full Text] [Related]
2. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches. Li HL; Ma Y; Ma Y; Li Y; Chen XB; Dong WL; Wang RL Oncotarget; 2017 May; 8(20):33225-33240. PubMed ID: 28402259 [TBL] [Abstract][Full Text] [Related]
3. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening. Lavecchia A; Di Giovanni C; Pesapane A; Montuori N; Ragno P; Martucci NM; Masullo M; De Vendittis E; Novellino E J Med Chem; 2012 May; 55(9):4142-58. PubMed ID: 22524450 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and biological evaluation of 3-aminoisoquinolin-1(2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B. George Rosenker KM; Paquette WD; Johnston PA; Sharlow ER; Vogt A; Bakan A; Lazo JS; Wipf P Bioorg Med Chem; 2015 Jun; 23(12):2810-8. PubMed ID: 25703307 [TBL] [Abstract][Full Text] [Related]
5. Discover potential inhibitors for PFKFB3 using 3D-QSAR, virtual screening, molecular docking and molecular dynamics simulation. Bao Y; Zhou L; Dai D; Zhu X; Hu Y; Qiu Y J Recept Signal Transduct Res; 2018; 38(5-6):413-431. PubMed ID: 30822195 [TBL] [Abstract][Full Text] [Related]
6. Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation. Du S; Yang B; Wang X; Li WY; Lu XH; Zheng ZH; Ma Y; Wang RL J Biomol Struct Dyn; 2020 Sep; 38(14):4232-4245. PubMed ID: 31588870 [TBL] [Abstract][Full Text] [Related]
7. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors. Park H; Li M; Choi J; Cho H; Ham SW Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977 [TBL] [Abstract][Full Text] [Related]
8. Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries. Jing L; Wu G; Hao X; Olotu FA; Kang D; Chen CH; Lee KH; Soliman MES; Liu X; Song Y; Zhan P Eur J Med Chem; 2019 Dec; 183():111696. PubMed ID: 31541869 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors. Li Y; Yu Y; Jin K; Gao L; Luo T; Sheng L; Shao X; Li J Bioorg Med Chem Lett; 2014 Sep; 24(17):4125-8. PubMed ID: 25124112 [TBL] [Abstract][Full Text] [Related]
10. Novel virtual lead identification in the discovery of hematopoietic cell kinase (HCK) inhibitors: application of 3D QSAR and molecular dynamics simulation. Bavi R; Kumar R; Rampogu S; Kim Y; Kwon YJ; Park SJ; Lee KW J Recept Signal Transduct Res; 2017 Jun; 37(3):224-238. PubMed ID: 27485399 [TBL] [Abstract][Full Text] [Related]
11. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. Kolb S; Mondésert O; Goddard ML; Jullien D; Villoutreix BO; Ducommun B; Garbay C; Braud E ChemMedChem; 2009 Apr; 4(4):633-48. PubMed ID: 19212959 [TBL] [Abstract][Full Text] [Related]
12. Computational design, synthesis and biological evaluation of para-quinone-based inhibitors for redox regulation of the dual-specificity phosphatase Cdc25B. Keinan S; Paquette WD; Skoko JJ; Beratan DN; Yang W; Shinde S; Johnston PA; Lazo JS; Wipf P Org Biomol Chem; 2008 Sep; 6(18):3256-63. PubMed ID: 18802630 [TBL] [Abstract][Full Text] [Related]
13. Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. Montes M; Braud E; Miteva MA; Goddard ML; Mondésert O; Kolb S; Brun MP; Ducommun B; Garbay C; Villoutreix BO J Chem Inf Model; 2008 Jan; 48(1):157-65. PubMed ID: 18154280 [TBL] [Abstract][Full Text] [Related]
14. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Rostom SAF; Badr MH; Abd El Razik HA; Ashour HMA Eur J Med Chem; 2017 Oct; 139():263-279. PubMed ID: 28803043 [TBL] [Abstract][Full Text] [Related]
15. Pharmacophore based 3D-QSAR modeling, virtual screening and docking for identification of potential inhibitors of β-secretase. Palakurti R; Vadrevu R Comput Biol Chem; 2017 Jun; 68():107-117. PubMed ID: 28288354 [TBL] [Abstract][Full Text] [Related]
16. Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. Kumar A; Roy S; Tripathi S; Sharma A J Biomol Struct Dyn; 2016; 34(2):239-49. PubMed ID: 25707809 [TBL] [Abstract][Full Text] [Related]
18. Design novel inhibitors for treating cancer by targeting Cdc25B catalytic domain with de novo design. Wu JW; Zhang H; Duan YQ; Dong WL; Cheng XC; Wang SQ; Wang RL Comb Chem High Throughput Screen; 2014; 17(10):837-47. PubMed ID: 25360618 [TBL] [Abstract][Full Text] [Related]
19. Lead generation of cysteine based mesenchymal epithelial transition (c-Met) kinase inhibitors: Using structure-based scaffold hopping, 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamics simulation. Raafat A; Mowafy S; Abouseri SM; Fouad MA; Farag NA Comput Biol Med; 2022 Jul; 146():105526. PubMed ID: 35487125 [TBL] [Abstract][Full Text] [Related]
20. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. Feng X; Wang LN; Zhou YY; Yu HP; Shen Q; Zang Y; Zhou YB; Li JY; Zhang HX; Li J Acta Pharmacol Sin; 2008 Oct; 29(10):1268-74. PubMed ID: 18817634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]