BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29413812)

  • 1. Molecular dynamics studies show solvation structure of type III antifreeze protein is disrupted at low pH.
    Peramo A
    Comput Biol Chem; 2018 Apr; 73():13-24. PubMed ID: 29413812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study.
    Maddah M; Maddah M; Peyvandi K
    Phys Chem Chem Phys; 2019 Oct; 21(39):21836-21846. PubMed ID: 31552400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity.
    Grabowska J; Kuffel A; Zielkiewicz J
    J Chem Phys; 2016 Aug; 145(7):075101. PubMed ID: 27544127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The remarkable hydration of the antifreeze protein Maxi: a computational study.
    Sharp KA
    J Chem Phys; 2014 Dec; 141(22):22D510. PubMed ID: 25494781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
    Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T
    Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein.
    Choi SR; Seo YJ; Kim M; Eo Y; Ahn HC; Lee AR; Park CJ; Ryu KS; Cheong HK; Lee SS; Jin E; Lee JH
    FEBS Lett; 2016 Dec; 590(23):4202-4212. PubMed ID: 27718246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation.
    Ko TP; Robinson H; Gao YG; Cheng CH; DeVries AL; Wang AH
    Biophys J; 2003 Feb; 84(2 Pt 1):1228-37. PubMed ID: 12547803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of antifreeze protein and impact on antifreeze activity.
    Du N; Liu XY; Hew CL
    J Phys Chem B; 2006 Oct; 110(41):20562-7. PubMed ID: 17034244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of surface charge on the thermal stability and ice recrystallization inhibition activity of antifreeze protein III (AFP III).
    Deller RC; Carter BM; Zampetakis I; Scarpa F; Perriman AW
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1055-1060. PubMed ID: 29137985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.
    Krishnamoorthy AN; Holm C; Smiatek J
    J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water structure and dynamics in the hydration layer of a type III anti-freeze protein.
    Brotzakis ZF; Voets IK; Bakker HJ; Bolhuis PG
    Phys Chem Chem Phys; 2018 Mar; 20(10):6996-7006. PubMed ID: 29468240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation Layer of Antifreeze Proteins Analyzed with a Markov State Model.
    Wellig S; Hamm P
    J Phys Chem B; 2018 Dec; 122(49):11014-11022. PubMed ID: 29889528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice.
    Garnham CP; Nishimiya Y; Tsuda S; Davies PL
    FEBS Lett; 2012 Nov; 586(21):3876-81. PubMed ID: 23017208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the mechanism of ice binding by type III antifreeze proteins.
    Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE
    J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR on a type III antifreeze protein in the presence of ice.
    Siemer AB; McDermott AE
    J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.