BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29413813)

  • 1. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites.
    Wang Q; Xu Y; Gu Z; Liu N; Jin K; Li Y; Crabbe MJC; Zhong Y
    Comput Biol Chem; 2018 Apr; 73():25-30. PubMed ID: 29413813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification.
    Banerjee R; Rudra P; Prajapati RK; Sengupta S; Mukhopadhyay J
    Tuberculosis (Edinb); 2014 Jul; 94(4):397-404. PubMed ID: 24832563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rifamycin inhibition of WT and Rif-resistant Mycobacterium tuberculosis and Escherichia coli RNA polymerases in vitro.
    Gill SK; Garcia GA
    Tuberculosis (Edinb); 2011 Sep; 91(5):361-9. PubMed ID: 21704562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity Selection-Mass Spectrometry Identifies a Novel Antibacterial RNA Polymerase Inhibitor.
    Walker SS; Degen D; Nickbarg E; Carr D; Soriano A; Mandal M; Painter RE; Sheth P; Xiao L; Sher X; Murgolo N; Su J; Olsen DB; Ebright RH; Young K
    ACS Chem Biol; 2017 May; 12(5):1346-1352. PubMed ID: 28323406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology modeling of wild-type, D516V, and H526L Mycobacterium tuberculosis RNA polymerase and their molecular docking study with inhibitors.
    Josa D; da Cunha EF; Ramalho TC; Souza TC; Caetano MS
    J Biomol Struct Dyn; 2008 Feb; 25(4):373-6. PubMed ID: 18092831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis.
    Kurabachew M; Lu SH; Krastel P; Schmitt EK; Suresh BL; Goh A; Knox JE; Ma NL; Jiricek J; Beer D; Cynamon M; Petersen F; Dartois V; Keller T; Dick T; Sambandamurthy VK
    J Antimicrob Chemother; 2008 Oct; 62(4):713-9. PubMed ID: 18587134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and Biosynthesis of Gladiolin: A Burkholderia gladioli Antibiotic with Promising Activity against Mycobacterium tuberculosis.
    Song L; Jenner M; Masschelein J; Jones C; Bull MJ; Harris SR; Hartkoorn RC; Vocat A; Romero-Canelon I; Coupland P; Webster G; Dunn M; Weiser R; Paisey C; Cole ST; Parkhill J; Mahenthiralingam E; Challis GL
    J Am Chem Soc; 2017 Jun; 139(23):7974-7981. PubMed ID: 28528545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis.
    Brandis G; Pietsch F; Alemayehu R; Hughes D
    J Antimicrob Chemother; 2015 Mar; 70(3):680-5. PubMed ID: 25362573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel small molecule inhibitors targeting the "switch region" of bacterial RNAP: structure-based optimization of a virtual screening hit.
    Sahner JH; Groh M; Negri M; Haupenthal J; Hartmann RW
    Eur J Med Chem; 2013 Jul; 65():223-31. PubMed ID: 23711833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles.
    Feng Y; Degen D; Wang X; Gigliotti M; Liu S; Zhang Y; Das D; Michalchuk T; Ebright YW; Talaue M; Connell N; Ebright RH
    Structure; 2015 Aug; 23(8):1470-1481. PubMed ID: 26190576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates.
    Brandis G; Hughes D
    J Antimicrob Chemother; 2013 Nov; 68(11):2493-7. PubMed ID: 23759506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of novel bacterial RNA polymerase inhibitors: pharmacophore-based virtual screening and hit optimization.
    Hinsberger S; Hüsecken K; Groh M; Negri M; Haupenthal J; Hartmann RW
    J Med Chem; 2013 Nov; 56(21):8332-8. PubMed ID: 24112046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous identification of rifampin-resistant Mycobacterium tuberculosis and nontuberculous mycobacteria by polymerase chain reaction-single strand conformation polymorphism and sequence analysis of the RNA polymerase gene (rpoB).
    Kim BJ; Lee KH; Yun YJ; Park EM; Park YG; Bai GH; Cha CY; Kook YH
    J Microbiol Methods; 2004 Jul; 58(1):111-8. PubMed ID: 15177909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3).
    Lin W; Das K; Degen D; Mazumder A; Duchi D; Wang D; Ebright YW; Ebright RY; Sineva E; Gigliotti M; Srivastava A; Mandal S; Jiang Y; Liu Y; Yin R; Zhang Z; Eng ET; Thomas D; Donadio S; Zhang H; Zhang C; Kapanidis AN; Ebright RH
    Mol Cell; 2018 Apr; 70(1):60-71.e15. PubMed ID: 29606590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis clinical isolates.
    Wu X; Zhang J; Zhuang Y; Zhang X; Li G; He X
    Chin Med J (Engl); 1999 Jun; 112(6):524-8. PubMed ID: 11601331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of novel N-aryl pyrrothine derivatives as bacterial RNA polymerase inhibitors.
    Huang MH; Kong B; Meng JY; Lv YB; Peng YF; Chen YP; Tan XD
    Chem Biol Drug Des; 2020 Nov; 96(5):1262-1271. PubMed ID: 32491252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors.
    Elgaher WA; Sharma KK; Haupenthal J; Saladini F; Pires M; Real E; Mély Y; Hartmann RW
    J Med Chem; 2016 Aug; 59(15):7212-22. PubMed ID: 27339173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis.
    Weiss LA; Harrison PG; Nickels BE; Glickman MS; Campbell EA; Darst SA; Stallings CL
    J Bacteriol; 2012 Oct; 194(20):5621-31. PubMed ID: 22904282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different rifampin sensitivities of Escherichia coli and Mycobacterium tuberculosis RNA polymerases are not explained by the difference in the beta-subunit rifampin regions I and II.
    Zenkin N; Kulbachinskiy A; Bass I; Nikiforov V
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1587-90. PubMed ID: 15793146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-resistance between rifampicin and KRM-1648 is associated with specific rpoB alleles in Mycobacterium tuberculosis.
    Park YK; Kim BJ; Ryu S; Kook YH; Choe YK; Bai GH; Kim SJ
    Int J Tuberc Lung Dis; 2002 Feb; 6(2):166-70. PubMed ID: 11931418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.