These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29413865)

  • 1. Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale.
    Shrestha N; Chilkoor G; Wilder J; Ren ZJ; Gadhamshetty V
    Bioelectrochemistry; 2018 Jun; 121():56-64. PubMed ID: 29413865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment.
    Zhang L; Fu G; Zhang Z
    Bioelectrochemistry; 2019 Apr; 126():20-28. PubMed ID: 30472568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shale gas produced water treatment using innovative microbial capacitive desalination cell.
    Stoll ZA; Forrestal C; Ren ZJ; Xu P
    J Hazard Mater; 2015; 283():847-55. PubMed ID: 25464328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism.
    Akash S; Sivaprakash B; Rajamohan N
    Environ Res; 2022 Nov; 214(Pt 3):113999. PubMed ID: 35932837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions.
    Feng C; Hou CH; Chen S; Yu CP
    Chemosphere; 2013 Apr; 91(5):623-8. PubMed ID: 23375820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells.
    Guo F; Fu G; Zhang Z; Zhang C
    Bioresour Technol; 2013 May; 136():425-30. PubMed ID: 23567712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell.
    Herrero-Hernandez E; Smith TJ; Akid R
    Biosens Bioelectron; 2013 Jan; 39(1):194-8. PubMed ID: 22902238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):409-16. PubMed ID: 23053104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production.
    Gadhamshetty V; Belanger D; Gardiner CJ; Cummings A; Hynes A
    Bioresour Technol; 2013 Jan; 127():378-85. PubMed ID: 23138060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant.
    Zhang F; Ge Z; Grimaud J; Hurst J; He Z
    Bioresour Technol; 2013 May; 136():316-21. PubMed ID: 23567697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch and semi-continuous treatment of cassava wastewater using microbial fuel cells and metataxonomic analysis.
    Quintero-Díaz JC; Gil-Posada JO
    Bioprocess Biosyst Eng; 2024 Jul; 47(7):1057-1070. PubMed ID: 38842769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell.
    Elakkiya E; Matheswaran M
    Bioresour Technol; 2013 May; 136():407-12. PubMed ID: 23567709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW).
    Rahman A; Borhan MS; Rahman S
    Water Sci Technol; 2018 Jan; 77(1-2):387-397. PubMed ID: 29377823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells.
    Seo Y; Kang H; Chang S; Lee YY; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):13-24. PubMed ID: 29035628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel operational strategy to enhance wastewater treatment with dual-anode assembled microbial desalination cell.
    Liu F; Wang L; Zuo K; Luo S; Zhang X; Liang P; Huang X
    Bioelectrochemistry; 2019 Apr; 126():99-104. PubMed ID: 30530261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells.
    Zheng W; Cai T; Huang M; Chen D
    J Biosci Bioeng; 2017 Nov; 124(5):551-558. PubMed ID: 28625613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process.
    Kelly PT; He Z
    Bioresour Technol; 2014 Apr; 157():154-60. PubMed ID: 24549237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater: influence of biocatalyst type on electricity production.
    Ismail ZZ; Jaeel AJ
    ScientificWorldJournal; 2013; 2013():713515. PubMed ID: 24453893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.
    An BM; Heo Y; Maitlo HA; Park JY
    Bioresour Technol; 2016 Jun; 210():68-73. PubMed ID: 26888335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.