These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29413905)

  • 1. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.
    Autiero I; Ruvo M; Improta R; Vitagliano L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1006-1016. PubMed ID: 29413905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis.
    Davlieva M; Donarski J; Wang J; Shamoo Y; Nikonowicz EP
    Nucleic Acids Res; 2014; 42(16):10795-808. PubMed ID: 25140011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide.
    Lin PH; Tsai CW; Wu JW; Ruaan RC; Chen WY
    Biotechnol J; 2012 Nov; 7(11):1367-75. PubMed ID: 22678933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding.
    Rhinehardt KL; Srinivas G; Mohan RV
    J Phys Chem B; 2015 Jun; 119(22):6571-83. PubMed ID: 25963836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study.
    Xia T; Yuan J; Fang X
    J Phys Chem B; 2013 Dec; 117(48):14994-5003. PubMed ID: 24245799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.
    Rhinehardt KL; Vance SA; Mohan RV; Sandros M; Srinivas G
    J Biomol Struct Dyn; 2018 Jun; 36(8):1934-1947. PubMed ID: 28592206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation of a RNA Aptasensor.
    Ruan M; Seydou M; Noel V; Piro B; Maurel F; Barbault F
    J Phys Chem B; 2017 Apr; 121(16):4071-4080. PubMed ID: 28363022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.
    Amano R; Takada K; Tanaka Y; Nakamura Y; Kawai G; Kozu T; Sakamoto T
    Biochemistry; 2016 Nov; 55(45):6221-6229. PubMed ID: 27766833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.
    Warfield BM; Anderson PC
    PLoS One; 2017; 12(4):e0176229. PubMed ID: 28437473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of the recognition of ATP by nucleic acid aptamers.
    Xie YC; Eriksson LA; Zhang RB
    Nucleic Acids Res; 2020 Jul; 48(12):6471-6480. PubMed ID: 32442296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR resonance assignments for the class II GTP binding RNA aptamer in complex with GTP.
    Wolter AC; Duchardt-Ferner E; Nasiri AH; Hantke K; Wunderlich CH; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2016 Apr; 10(1):101-5. PubMed ID: 26373429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design.
    Hughes ZE; Walsh TR
    ACS Sens; 2017 Nov; 2(11):1602-1611. PubMed ID: 29063764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies.
    Moine H; Cachia C; Westhof E; Ehresmann B; Ehresmann C
    RNA; 1997 Mar; 3(3):255-68. PubMed ID: 9056763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Experimental Parameters to Explore Small-Ligand/Aptamer Interactions through Use of (1) H NMR Spectroscopy and Molecular Modeling.
    Souard F; Perrier S; Noël V; Fave C; Fiore E; Peyrin E; Garcia J; Vanhaverbeke C
    Chemistry; 2015 Oct; 21(44):15740-8. PubMed ID: 26356596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embracing proteins: structural themes in aptamer-protein complexes.
    Gelinas AD; Davies DR; Janjic N
    Curr Opin Struct Biol; 2016 Feb; 36():122-32. PubMed ID: 26919170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.