These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29413944)

  • 1. Cholesterol-oxidase-magnetic nanobioconjugates for the production of 4-cholesten-3-one and 4-cholesten-3, 7-dione.
    Ghosh S; Ahmad R; Gautam VK; Khare SK
    Bioresour Technol; 2018 Apr; 254():91-96. PubMed ID: 29413944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial cholesterol oxidases are able to act as flavoprotein-linked ketosteroid monooxygenases that catalyse the hydroxylation of cholesterol to 4-cholesten-6-ol-3-one.
    Molnár I; Hayashi N; Choi KP; Yamamoto H; Yamashita M; Murooka Y
    Mol Microbiol; 1993 Feb; 7(3):419-28. PubMed ID: 8459768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The substrate specificity and stereochemistry, reversibility and inhibition of the 3-oxo steroid delta 4-delta 5-isomerase component of cholesterol oxidase.
    Smith AG; Brooks CJ
    Biochem J; 1977 Oct; 167(1):121-9. PubMed ID: 588244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding of thermally denatured cholesterol oxidases by magnetic nanoparticles.
    Ghosh S; Ahmad R; Khare SK
    Int J Biol Macromol; 2019 Oct; 138():958-965. PubMed ID: 31325504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation/isomerization of 5-cholesten-3 beta-ol and 5-cholesten-3-one to 4-cholesten-3-one in pure sterol and mixed phospholipid-containing monolayers by cholesterol oxidase.
    Slotte JP; Ostman AL
    Biochim Biophys Acta; 1993 Feb; 1145(2):243-9. PubMed ID: 8431456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of production of cholesterol oxidases in three Rhodococcus strains.
    Aihara H; Watanabe K; Nakamura R
    J Appl Bacteriol; 1986 Oct; 61(4):269-74. PubMed ID: 3465718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of 7-Ketocholesterol by Rhodococcus erythropolis MTCC 3951: Process optimization and enzymatic insights.
    Ghosh S; Khare SK
    Chem Phys Lipids; 2017 Oct; 207(Pt B):253-259. PubMed ID: 28571786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic activity of cholesterol oxidase immobilized onto polymer nanoparticles mediated by Congo red.
    Silva RA; Carmona-Ribeiro AM; Petri DF
    Colloids Surf B Biointerfaces; 2013 Oct; 110():347-55. PubMed ID: 23751415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4.
    Fernández de Las Heras L; Perera J; Navarro Llorens JM
    J Steroid Biochem Mol Biol; 2014 Jan; 139():33-44. PubMed ID: 24125733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradations of 4-cholesten-3-one and 1,4-androstadiene-3,17-dione by cholesterol-degrading bacteria.
    Watanabe K; Aihara H; Tachi N; Nakamura R
    J Appl Bacteriol; 1987 Feb; 62(2):151-5. PubMed ID: 3571037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of cytotoxic 7-Ketocholesterol by Pseudomonas aeruginosa PseA.
    Ghosh S; Khare SK
    Bioresour Technol; 2016 Aug; 213():44-49. PubMed ID: 27020128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.
    Torabi SF; Khajeh K; Ghasempur S; Ghaemi N; Siadat SO
    J Biotechnol; 2007 Aug; 131(2):111-20. PubMed ID: 17658643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor.
    Singh S; Singhal R; Malhotra BD
    Anal Chim Acta; 2007 Jan; 582(2):335-43. PubMed ID: 17386511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization and stabilization of cholesterol oxidase on modified sepharose particles.
    Chen Y; Xin Y; Yang H; Zhang L; Zhang Y; Xia X; Tong Y; Wang W
    Int J Biol Macromol; 2013 May; 56():6-13. PubMed ID: 23395650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk mat as bio-matrix for the immobilization of cholesterol oxidase.
    Saxena U; Goswami P
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1122-31. PubMed ID: 20182817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles.
    Huang J; Liu H; Zhang P; Zhang P; Li M; Ding L
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():31-7. PubMed ID: 26354237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing.
    Zhu L; Xu L; Tan L; Tan H; Yang S; Yao S
    Talanta; 2013 Mar; 106():192-9. PubMed ID: 23598116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of 4-cholesten-3-one and 7 alpha-hydroxy-4-cholesten-3-one into cholestanol and bile acids in cerebrotendinous xanthomatosis.
    Salen G; Shefer S; Tint GS
    Gastroenterology; 1984 Aug; 87(2):276-83. PubMed ID: 6735073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.