These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29414041)

  • 1. Wisdom of crowds for synthetic accessibility evaluation.
    Baba Y; Isomura T; Kashima H
    J Mol Graph Model; 2018 Mar; 80():217-223. PubMed ID: 29414041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RASA: a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules.
    Huang Q; Li LL; Yang SY
    J Chem Inf Model; 2011 Oct; 51(10):2768-77. PubMed ID: 21932860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.
    Ertl P; Schuffenhauer A
    J Cheminform; 2009 Jun; 1(1):8. PubMed ID: 20298526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and reaction based evaluation of synthetic accessibility.
    Boda K; Seidel T; Gasteiger J
    J Comput Aided Mol Des; 2007 Jun; 21(6):311-25. PubMed ID: 17294248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the consistency of medicinal chemists in reviewing sets of compounds.
    Lajiness MS; Maggiora GM; Shanmugasundaram V
    J Med Chem; 2004 Sep; 47(20):4891-6. PubMed ID: 15369393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does the "surprisingly popular" method yield accurate crowdsourced predictions?
    Rutchick AM; Ross BJ; Calvillo DP; Mesick CC
    Cogn Res Princ Implic; 2020 Nov; 5(1):57. PubMed ID: 33175285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crowds Replicate Performance of Scientific Experts Scoring Phylogenetic Matrices of Phenotypes.
    O'Leary MA; Alphonse K; Mariangeles AH; Cavaliere D; Cirranello A; Dietterich TG; Julius M; Kaufman S; Law E; Passarotti M; Reft A; Robalino J; Simmons NB; Smith SY; Stevenson DW; Theriot E; Velazco PM; Walls RL; Yu M; Daly M
    Syst Biol; 2018 Jan; 67(1):49-60. PubMed ID: 29253296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timely synthetic support for medicinal chemists.
    Potoski J
    Drug Discov Today; 2005 Jan; 10(2):115-20. PubMed ID: 15718160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing synthetic accessibility of chemical compounds using machine learning methods.
    Podolyan Y; Walters MA; Karypis G
    J Chem Inf Model; 2010 Jun; 50(6):979-91. PubMed ID: 20536191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bright Future for Evolutionary Methods in Drug Design.
    Le TC; Winkler DA
    ChemMedChem; 2015 Aug; 10(8):1296-300. PubMed ID: 26059362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting synthetic accessibility: application in drug discovery and development.
    Baber JC; Feher M
    Mini Rev Med Chem; 2004 Aug; 4(6):681-92. PubMed ID: 15279602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective exploration of synthetically feasible, medicinally relevant chemical space.
    Schürer SC; Tyagi P; Muskal SM
    J Chem Inf Model; 2005; 45(2):239-48. PubMed ID: 15807484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection criteria for drug-like compounds.
    Muegge I
    Med Res Rev; 2003 May; 23(3):302-21. PubMed ID: 12647312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated recycling of chemistry for virtual screening and library design.
    Vainio MJ; Kogej T; Raubacher F
    J Chem Inf Model; 2012 Jul; 52(7):1777-86. PubMed ID: 22657574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem.
    Balcells D; Clot E; Eisenstein O; Nova A; Perrin L
    Acc Chem Res; 2016 May; 49(5):1070-8. PubMed ID: 27152927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-supervised clustering of multidimensional data using crowdsourcing.
    Butyaev A; Drogaris C; Tremblay-Savard O; Waldispühl J
    R Soc Open Sci; 2022 May; 9(5):211189. PubMed ID: 35620007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.